Photovoltaic cell – the history of invention – review
More details
Hide details
Environmental Engineering, University of Warmia and Mazury in Olsztyn, Poland
Submission date: 2022-12-13
Final revision date: 2023-02-09
Acceptance date: 2023-02-15
Publication date: 2023-03-24
Corresponding author
Adam Starowicz   

Environmental Engineering, University of Warmia and Mazury in Olsztyn, Warszawska 117A, 10-720, Olsztyn, Poland
Polityka Energetyczna – Energy Policy Journal 2023;26(1):169-180
The discovery story of photovoltaic cells is entirely typical. Chance played a role in it, and before it went to the average user, it first served the army. In addition, as with the discovery of electricity, there are many scientists and more than 100 years of technological development behind how modern photovoltaic cells and solar panels work. The first photovoltaic panels were able to power, at most, a radio. Today their power allows for the production of energy for the entire household. Technology is continuously developing, and the hence achieved efficiency keeps growing. Modern silicon solar cells of large photovoltaic farms power thousands of buildings, and this installation can be seen more and more often. This article describes the development of the use of solar energy since ancient times and the comprehensive history of the invention of the photovoltaic cell, starting with the discovery of the photoelectric effect by Edmond Becquerel in 1839 to the achievement of nearly 50% efficiency under laboratory conditions. The advances in photovoltaic cell efficiency and the price of energy production per watt over the years are also shown. Examples of the first applications of photovoltaics are given, and profiles of figures who contributed to the development of solar technology are introduced. The considerable influence of Polish scientists on the development of the photovoltaic cell is also highlighted. Without them, this method of obtaining energy would perhaps not be at high levelh level today.
Panel fotowoltaiczny – historia wynalazku – artykuł przeglądowy
ogniwo fotowoltaiczne, panel solarny, historia energii solarnej, efekt fotoelektryczny
Pod wieloma względami historia odkrycia instalacji fotowoltaicznych jest dość typowa. Odegrał w niej rolę przypadek, a zanim trafiła do zwykłego użytkownika, najpierw służyła armii. Ponadto, podobnie jak w przypadku odkrycia energii elektrycznej, za tym, w jaki sposób pracują współczesne ogniwa fotowoltaiczne oraz panele słoneczne, stoi wielu naukowców i więcej niż 100 lat rozwoju technologii. Pierwsze panele fotowoltaiczne były w stanie zasilić co najwyżej radio, dziś ich moc pozwala na produkcję energii dla całego gospodarstwa domowego. Technologia jest stale rozwijana, a co za tym idzie osiągana efektywność wzrasta. Współczesne krzemowe ogniwa słoneczne wielkich farm fotowoltaicznych zasilają kilkadziesiąt tysięcy budynków, a tego typu instalacji stale przybywa. W niniejszym artykule opisano rozwój wykorzystania energii słonecznej od czasów starożytnych oraz kompleksową historię wynalazku ogniwa fotowoltaicznego począwszy od odkrycia efektu fotoelektrycznego przez Edmonda Becquerela w 1839 roku na osiągnięciu niemal 50% sprawności w warunkach laboratoryjnych. Przedstawiono także postępy w zakresie efektywności ogniwa fotowoltaicznego oraz ceny produkcji energii w przeliczeniu na 1 wat na przestrzeni lat. Podano przykłady pierwszych zastosowań fotowoltaiki oraz przybliżono sylwetki postaci mających swój wkład w rozwój technologii solarnej. Podkreślono również niemały wpływ polskich naukowców na rozwój ogniwa fotowoltaicznego, bez których być może ten sposób pozyskiwania energii nie byłby dziś na tak wysokim poziomie.
Arepalli, S. and Moloney, P. 2015. Engineered nanomaterials in aerospace. MRS Bulletin 40(10), pp. 804–811, DOI: 10.1557/MRS.2015.231.
Becquerel, A.E. 1839. Research on the effects of chemical radiation from sunlight by means of electric currents (Recherches sur les effets de la radiation chimique de la lumiere solaire au moyen des courants electriques). Comptes Rendus de L´Academie des Sciences 9, pp. 145–149 (in French).
Berner, R.A. 2003. The long-term carbon cycle, fossil fuels and atmospheric composition. Nature 2003 426(6964), pp. 323–326, DOI: 10.1038/nature02131.
Bosio et al. 2020 – Bosio, A., Pasini, S. and Romeo, N. 2020. The History of Photovoltaics with Emphasis on CdTe Solar Cells and Modules. Coatings 2020 10(4), p. 344, DOI: 10.3390/COATINGS10040344.
Brusso, B.C. 2019. A Brief History of the Energy Conversion of Light [History]. IEEE Industry Applications Magazine 25(4), pp. 8–13, DOI: 10.1109/MIAS.2019.2908804.
Chapin et al. 1954 – Chapin, D.M., Fuller, C.S. and Pearson, G.L. 1954 – A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power. Journal of Applied Physics 25(5), p. 676, DOI: 10.1063/1.1721711.
Dhingra, A. 2021. Solar Cell. Electrical and Electronic Devices, Circuits, and Materials: Technological Challenges and Solutions pp.155–167, DOI: 10.1002/9781119755104.CH9.
Einstein, A. 1905. On the electrodynamics of moving bodies (Zur Elektrodynamik bewegter Körper). Annalen der Physik 322(10), pp. 891–921, DOI: 10.1002/ANDP.19053221004 (in German).
Fischer et al. 2016 – Fischer, W.W., Hemp, J. and Johnson, J.E. 2016. Evolution of Oxygenic Photosynthesis. Annual Review of Earth and Planetary Sciences 44, pp. 647–683, DOI: 10.1146/annurev-earth-060313-054810.
Fraas, L.M. 2014. History of Solar Cell Development. Low-Cost Solar Electric Power pp. 1–12, DOI: 10.1007/978-3-319-07530-3_1.
Geisz et al. 2020 – Geisz, J.F., France, R.M., Schulte, K.L., Steiner, M.A., Norman, A.G., Guthrey, H.L., Young, M.R., Song, T. and Moriarty, T. 2020. Six-junction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration. Nature Energy 2020 5(4), pp. 326–335, DOI: 10.1038/s41560-020-0598-5.
Goetzberger et al. 2003 – Goetzberger, A., Hebling, C. and Schock, H.W. 2003. Photovoltaic materials, history, status and outlook. Materials Science and Engineering: R: Reports 40(1), pp. 1–46, DOI: 10.1016/S0927-796X(02)00092-X.
Jäger-Waldau, A. 2020. The Untapped Area Potential for Photovoltaic Power in the European Union. Clean Technologies 2020 2(4), pp. 440–446, DOI: 10.3390/CLEANTECHNOL2040027.
Kalogirou, S.A. 2009. Photovoltaic Systems. Solar Energy Engineering pp. 469–519, DOI: 10.1016/B978-0-12-374501-9.00009-1.
Kuppusamy et al. 2022 – Kuppusamy, A.V., Bashir, S., Ramesh, S. and Ramesh, K. 2022. Solar cell-integrated energy storage devices for electric vehicles: a breakthrough in the green renewable energy. Ionics 28(9), pp. 4065–4081, DOI: 10.1007/S11581-022-04700-6/FIGURES/9.
Lafond et al. 2017 – Lafond, F., Bailey, A.G., Bakker, J.D., Rebois, D., Zadourian, R., McSharry, P. and Farmer, J.D. 2017. How well do experience curves predict technological progress? A method for making distributional forecasts. Technological Forecasting and Social Change 128, pp. 104–117, DOI: 10.1016/j.techfore.2017.11.001.
Malinkiewicz et al. 2013 – Malinkiewicz, O., Yella, A., Lee, Y.H., Espallargas, G.M., Graetzel, M., Nazeeruddin, M.K. and Bolink, H.J. 2013. Perovskite solar cells employing organic charge-transport layers. Nature Photonics 2013 8(2), pp. 128–132, DOI: 10.1038/nphoton.2013.341.
Masson et al. 2018 – Masson, G., Kaizuka, I., Lindahl, J., Jaeger-Waldau, A., Neubourg, G., Ahm, P., Donoso, J. and Tilli, F. 2018. A Snapshot of Global PV Markets – The Latest Survey Results on PV Markets and Policies from the IEA PVPS Programme in 2017. 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion, WCPEC 2018 – A Joint Conference of 45th IEEE PVSC, 28th PVSEC and 34th EU PVSEC, pp. 3825–3828, DOI: 10.1109/PVSC.2018.8547794.
Perlin, J. 2004. Silicon solar cell turns 50. [Online] [Accessed: 2022-11-23].
Perlin, J. 2022. Let it shine : the 6,000-year story of solar energy. New World Library. [Online]> [Accessed: 2022-11-23].
Petti et al. 2012 – Petti, C.J., Hilali, M.M. and Prabhu, G. 2012. Thin Films in Photovoltaics. Handbook of Thin Film Deposition: Techniques, Processes, and Technologies: Third Edition, pp. 313–359, DOI: 10.1016/B978-1-4377-7873-1.00010-3.
Rani et al. 2020 – Rani, G., Jaswal, V., Banu, R. and Yogalakshmi, K.N. 2020. An Insight into Biological Photovoltaic Cell Based Electrochemical System. Bioelectrochemical Systems, pp. 53–70, DOI: 10.1007/978-981-15-6872-5_3.
Ross, H. 2008. Fly around the world with a solar powered airplane. 8th AIAA Aviation Technology, Integration and Operations (ATIO) Conference, DOI: 10.2514/6.2008-8954.
Shahidehpour, M. and Schwartz, F. 2004. Don’t let the Sun go down on PV. IEEE Power and Energy Magazine 2(3), pp. 40–48, DOI: 10.1109/MPAE.2004.1293599.
Sigismondi, C. and Oliva, P. 2005. Solar Oblateness from Archimedes to Dicke. Il Nuovo Cimento B 120(10), DOI: 10.1393/ncb/i2005-10147-7.
Smith, W. 1876. The action of light on selenium. [Online] [Accessed: 2022-11-23].
SolarPower Europe 2022. [Online] https://www.solarpowereurope.o... [Accessed: 2022-12-05].
Spinka, K.W. 2010. Attributes of Renewable Energy: From Nano-possibilities to Solar Power. Curriculum Units by Fellows of the Yale-New Haven Teachers Institute IV: Renewable Energy.
Stock 2022a. Adobe Stock 2022. [Online] [Accessed: 2022-11-23].
Stock 2022b. Adobe Stock 2022. [Online] [Accessed: 2022-11-23].
Tahir et al. 2020 – Tahir, M.B., Abrar, M., Tehseen, A., Awan, T.I., Bashir, A. and Nabi, G. 2020. Nanotechnology: the road ahead. Chemistry of Nanomaterials, pp. 289–308, DOI: 10.1016/B978-0-12-818908-5.00011-1.
Taylor et al. 2020 – Taylor, M., Ralon, P., Anuta, H. and Al-Zoghoul, S. 2020. Renewable Power Generation Costs in 2019. IRENA (2020) International Renewable Energy Agency.
Tomaszewski, P.E. 2003. Jan Czochralski and his method (Jan Czochralski i jego metoda) (in Polish).
Wolfe, P. 2018. What Is Photovoltaics? The Solar Generation, pp. 9–24, DOI: 10.1002/9781119425618.CH2.
Zaidi, B. 2018. Introductory chapter: Introduction to photovoltaic effect. Solar Panels and Photovoltaic Materials. [Online]> [Accessed: 2022-11-24].
Journals System - logo
Scroll to top