ORIGINAL PAPER
The performance of a developed diesel vehicle to run on WCO biodiesel at variable speeds and loads
 
More details
Hide details
1
Mechanical Engineering Department, Faculty of Engineering, Al-Azhar University, Cairo, Egypt
 
2
Mechanical Engineering Department, Engineering and Renewable Energy Research Institute, National Research Centre, Giza, Egypt
 
3
Mechanical Engineering Department, Faculty of Engineering, Fayoum University, Fayoum, Egypt
 
 
Submission date: 2024-01-09
 
 
Final revision date: 2024-03-03
 
 
Acceptance date: 2024-04-04
 
 
Publication date: 2024-06-19
 
 
Corresponding author
Hassan M.M. Mustafa   

National Research Centre, Egypt
 
 
Polityka Energetyczna – Energy Policy Journal 2024;27(2):105-128
 
KEYWORDS
TOPICS
ABSTRACT
Vehicle emissions and performance fueled with waste cooking oil biodiesel is the main topic of this research. Biodiesel was produced through transesterification with physical and chemical characteristics comparable to diesel. B20 is a methyl ester of 20% blended with diesel. A diesel vehicle was modified and equipped with all measuring instruments needed to perform all experiments. The variable speed and load tests were conducted on the vehicle to measure the performance and emissions at different loads (0–30 kW) and different speeds (0–33 km/h). The vehicle speed was the maximum attained for each gear with a constant fuel flow rate without external fuel control at a steady state. At a vehicle speed of 33 km/h, the greatest increases in fuel consumption and exhaust gas temperature for biodiesel B20 were 17 and 6%, respectively, as related to pure diesel. At a vehicle speed of 33 km/h, B20 reduced the distance traveled, carbon monoxide and hydrocarbon concentrations compared to diesel by 22, 9 and 10%, respectively. At a vehicle speed of 33 km/h, the increases in nitrogen oxides and oxygen concentrations of B20 were 4 and 3% higher, respectively, than crude diesel over the whole tested load range. The biggest increases in distance, fuel consumption, and exhaust gas temperature for B20 over diesel were 13, 3, and 2%, respectively, at a vehicle load of 30 kW. The B20 blend decreased CO and hydrocarbon emissions related to diesel by 17 and 32%, respectively, at a vehicle load of 30 kW. The increases in nitrogen oxides and oxygen concentrations of B20 across the whole load range were 11 and 3% higher than pure diesel at a vehicle load of 30 kW, respectively. Biodiesel blend B20 is suggested for application in vehicles providing that the vehicle is moderately loaded.
METADATA IN OTHER LANGUAGES:
Polish
Osiągi opracowanego pojazdu z silnikiem Diesla przystosowanego do zasilania biodieslem WCO przy zmiennych prędkościach i obciążeniach
WCO, biodiesel, pojazd, obciążenie zmienne, zmienna prędkość
Głównym tematem badań podjętych w niniejszym artykule są emisje i osiągi pojazdów napędzanych biodieslem odpadowym z oleju spożywczego. Biodiesel powstał w procesie transestryfikacji o właściwościach fizycznych i chemicznych porównywalnych z olejem napędowym. B20 to 20% ester metylowy zmieszany z olejem napędowym. Zmodyfikowano pojazd z silnikiem diesla i wyposażono go we wszystkie przyrządy pomiarowe potrzebne do przeprowadzenia wszystkich eksperymentów. Przeprowadzono testy zmiennej prędkości i obciążenia pojazdu, aby zmierzyć jego osiągi i emisję przy różnych obciążeniach (0–30 kW) i różnych prędkościach (0–33 km/h). Prędkość pojazdu była maksymalną osiąganą na każdym biegu przy stałym natężeniu przepływu paliwa bez zewnętrznego sterowania paliwem w stanie ustalonym. Przy prędkości pojazdu wynoszącej 33 km/h największe wzrosty zużycia paliwa i temperatury spalin dla biodiesla B20 wyniosły odpowiednio 17 i 6% w porównaniu do czystego oleju napędowego. Przy prędkości pojazdu wynoszącej 33 km/h B20 zmniejszył przebyty dystans oraz stężenie tlenku węgla i węglowodorów w porównaniu do oleju napędowego odpowiednio o 22, 9 i 10%. Przy prędkości pojazdu wynoszącej 33 km/h przyrosty stężeń tlenków azotu i tlenu B20 były w całym badanym zakresie obciążeń odpowiednio o 4 i 3% większe niż w przypadku surowego oleju napędowego. Największy wzrost zasięgu, zużycia paliwa i temperatury spalin dla B20 w porównaniu z olejem napędowym wyniósł odpowiednio 13, 3 i 2% przy obciążeniu pojazdu 30 kW. Mieszanka B20 zmniejszyła emisję CO i węglowodorów związaną z olejem napędowym odpowiednio o 17 i 32% przy obciążeniu pojazdu 30 kW. Wzrosty stężeń tlenków azotu i tlenu B20 w całym zakresie obciążenia były odpowiednio o 11 i 3% wyższe niż w przypadku czystego oleju napędowego przy obciążeniu pojazdu 30 kW. Mieszankę biodiesla B20 zaleca się stosować w pojazdach pod warunkiem, że pojazd jest umiarkowanie obciążony.
REFERENCES (46)
1.
Agarwal, A.K. and Dhar, A. 2011. Experimental investigation of preheated jatropha oil fuelled direct injection compression ignition engine-Part 2: Engine durability and effect on lubricating oil. ASTM Special Technical Publication 1477(2), pp. 355–375.
 
2.
Altun et al. 2011 – Altun, S., Yasar, F. and Oner, C. 2011. Biodiesel production from raw cottonseed oil and its characterization. Energy Education Science and Technology Part A: Energy Science and Research 27(2), pp. 375–382. [Online] http://scholar.google.com/scho... [Accessed: 2-24-02-06].
 
3.
Çetin, M. and Yüksel, F. 2007. The use of hazelnut oil as a fuel in pre-chamber diesel engine. Applied Thermal Engineering 27(1), pp, 63–67, DOI: 10.1016/j.applthermaleng.2006.04.025.
 
4.
Chalatlon et al. 2011 – Chalatlon, V., Roy, M.M., Dutta, A. and Kumar, S. 2011. Jatropha oil production and an experimental investigation of its use as an alternative fuel in a DI diesel engine. Journal of Petroleum Technology and Alternative Fuels 2(5), pp. 76–85.
 
5.
Chhabra et al. 2016 – Chhabra, M., Sharma, A. and Dwivedi, G. 2016. Performance evaluation of diesel engine using rice bran biodiesel. Egyptian Journal of Petroleum 26(2), pp. 511–518, DOI: 10.1016/j.ejpe.2016.07.002.
 
6.
Dinesha, P. and Mohanan, P. 2012. Experimental investigations on the performance and emission characteristics of diesel engine using preheated pongamia methyl ester as fuel. Energy Scenarios Workshop 5, pp. 591–600.
 
7.
El-Baz et al. 2017 – El-Baz, F.K.F., Gad, M.S.S., Abdo, S.M.S. and Abu Hashish, H.M.M. 2017. Comparative study of performance and exhaust emissions of a diesel engine fueled with algal, used cooked and Jatropha oils biodiesel mixtures. International Journal of Mechanical and Mechatronics Engineering 17(5), pp. 90–100, DOI: 10.3390/robotics6040039.
 
8.
Elango, T. and Senthilkumar, T. 2011. Combustion and emission characteristics of a diesel engine fuelled with jatropha and diesel oil blends. Thermal Science 15(4), pp. 1205–1214, DOI: 10.2298/TSCI100614088E.
 
9.
Forson et al. 2004 – Forson, F.K., Oduro, E.K. and Hammond-Donkoh, E. 2004. Performance of jatropha oil blends in a diesel engine. Renewable Energy 29(7), pp. 1135–1145, DOI: 10.1016/j.renene.2003.11.002.
 
10.
Gad, M.S. and Abu Hashish, H.M. 2018. Effect of Egyptian roselle biodiesel on performance and emissions of diesel engine. Egyptian Journal of Chemistry 61(6), pp. 1161–1169, DOI: 10.21608/ejchem.2018.4425.1392.
 
11.
Galushchak et al. 2023 – Galushchak, O., Burlaka, S., Kupchuk, I., Bondarenko, V. and Gontaruk, Y. 2023. Environmental indicators of the operation of a diesel generator running on a mixture of biofuels. Polityka Energetyczna – Energy Policy Journal 26(4), pp. 195–208, DOI: 10.33223/EPJ/170759.
 
12.
Hasanin et al. 2022 – Hasanin, M.S., Hashem, A.H., Abu Hashish, H.M. and Abdelraof, M. 2022. A novel pressed coal from citrus and cooking oil wastes using fungi. Bioresources and Bioprocessing 9(1), 95, DOI: 10.1186/s40643-022-00582-8.
 
13.
Ibrahim M.M. et al. 2022 – Ibrahim, M.M., Elsaman, H.A., Hashish, H.M.A., El-Sayed, A.B. and Mostafa, E. 2022. Effect of the Duration Time of Cooking Frequency on Chemical and Physical Properties of Waste Cooking Oil Used for Biodiesel Production. Egyptian Journal of Chemistry 65(12), pp. 415–426, DOI: 10.21608/EJCHEM.2022.95410.5473.
 
14.
Ibrahim S.M.A. et al. 2017 – Ibrahim, S.M.A., Abed, K.A.A., Gad, M.S.S. and Abu Hashish, H.M. 2017. Optimum oil yield from Egyptian Jatropha seeds using screw press. International Journal of Mechanical and Mechatronics Engineering 17(1), pp. 47–56.
 
15.
Ibrahim S.M.A. et al. 2023 – Ibrahim, S.M.A., Abed, K.A., Gad, M.S. and Abu Hashish, H.M. 2023. A semi-industrial reactor for producing biodiesel from waste cooking oil. Biofuels 14(4), pp. 393–403, DOI: 10.1080/17597269.2022.2145758.
 
16.
Ibrahim S.M.A. et al. 2020 – Ibrahim, S.M.A., Abed, K.A., Gad, M.S. and Hashish, H.M.A. 2020. Experimental study on the effect of preheated Egyptian Jatropha oil and biodiesel on the performance and emissions of a diesel engine. International Journal of Mechanical and Mechatronics Engineering 20(1), pp. 59–69.
 
17.
Ibrahim S.M.A. et al. 2024 – Ibrahim, S.M.A., Abed, K.A., Gad, M.S. and Hashish, H.M.A. 2024. Performance and emissions of a diesel engine burning blends of Jatropha and waste cooking oil biodiesel. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 238(4), pp. 1157–1169, DOI: 10.1177/09544062231181809.
 
18.
Karabektas et al. 2008 – Karabektas, M., Ergen, G. and Hosoz, M. 2008. The effects of preheated cottonseed oil methyl ester on the performance and exhaust emissions of a diesel engine. Applied Thermal Engineering 28(17–18), pp. 2136–2143, DOI: 10.1016/j.applthermaleng.2007.12.016.
 
19.
Khalaf et al. 2023 – Khalaf, M., Abdel-Fadeel, W., Hashish, H.M.A., Wapet, D.E.M., Mahmoud, M.M., Elhady, S.A. and Esmail, M.F.C. 2023. Experimental Investigation of Different Extraction Methods for Producing Biofuel from Jatropha Seeds and Castor Seeds. International Journal of Energy Research 2023, DOI: 10.1155/2023/1780536.
 
20.
Khalid et al. 2013 – Khalid, A., Osman, S.A., Jaat, M.N.M., Mustaffa, N., Basharie, S.M. and Manshoor, B. 2013. Performance and emissions characteristics of diesel engine fuelled by biodiesel derived from palm oil. Applied Mechanics and Materials 315, pp. 517–522, DOI: 10.4028/www.scientific.net/AMM.315.517.
 
21.
Khater et al. 2023 – Khater, E.S.G., Abd Allah, S.A., Bahnasawy, A.H. and Hashish, H.M.A. 2023. Enhancing bio-oil yield extracted from Egyptian castor seeds by using microwave and ultrasonic. Scientific Reports 13(1), 4606, DOI: 10.1038/s41598-023-31794-3.
 
22.
Khater et al. 2024 – Khater, E.S.G., AbdAlla, S.A., Bahnasawy, A.H. and AbuHashish, H.M. 2024. Improvement of the production of bio-oil and biodiesel from Egyptian Jatropha seeds by using microwave and ultrasonic. Scientific Reports 14(1), 1882, DOI: 10.1038/s41598-024-51579-6.
 
23.
Koh, M.Y. and Tinia, T.I. 2011. A review of biodiesel production from Jatropha curcas L. oil. Renewable and Sustainable Energy Reviews 15(5), pp. 2240–2251, DOI: 10.1016/j.rser.2011.02.013.
 
24.
Kumar, A. and Sharma, S. 2008. An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L.): A review. Industrial Crops and Products 28(1), pp. 1–10, DOI: 10.1016/j.indcrop.2008.01.001.
 
25.
Kupchuk et al. 2022 – Kupchuk, I., Burlaka, S., Galushchak, A., Yemchyk, T., Galushchak, D. and Prysiazhniuk, Y. 2022. Research of autonomous generator indicators with the dynamically changing component of a two-fuel mixture. Polityka Energetyczna – Energy Policy Journal 25(2), pp. 147–162, DOI: 10.33223/EPJ/150746.
 
26.
Li et al. 2009 – Li, S., Wang, Y., Dong, S., Chen, Y., Cao, F. and Chai, F. 2009. Biodiesel production from Eruca Sativa Gars vegetable oil and motor, emissions properties. Renewable Energy 34(7), pp. 1871–1876, DOI: 10.1016/j.renene.2008.12.020.
 
27.
Meng et al. 2023 – Meng, J., Xu, W., Meng, F., Wang, B., Zhao, P., Wang, Z., Ji, H. and Yang, Y. 2023. Effects of waste cooking oil biodiesel addition on combustion, regulated and unregulated emission characteristics of common-rail diesel engine. Process Safety and Environmental Protection 178, pp. 1094–1106, DOI: 10.1016/J.PSEP.2023.08.065.
 
28.
Mohamed et al. 2022 – Mohamed, R.M., Hashish, H.M.A., Abdel-Samad, H.A., Awad, M.E. and Kadry, G.A. 2022. A Competent, Humble Cost Catalyst from Biowaste: High Performance and Combustion Characteristics of Alternative Diesel Fuel. Egyptian Journal of Chemistry 65(13), pp. 265–277, DOI: 10.21608/EJCHEM.2022.117718.5306.
 
29.
Mohod et al. 2014 – Mohod, R.T., Bhansali, S.S., Moghe, S.M. and Kathoke, T.B. 2014. Preheating of Biodiesel for the Improvement of the Performance Characteristics of Di Engine: A Review. International Journal of Engineering Research and General Science 2(4), pp. 747–753. [Online] https://www.mendeley.com/catal... [Accessed: 2024-03-15].
 
30.
Mulkan et al. 2024 – Mulkan, A., Mohd Zulkifli, N.W., Husin, H., Ahmadi and Dahlan, I. 2024. Performance and emissions assessment under full load operation of an unmodified diesel engine running on biodiesel-based waste cooking oil synthesized using JPW solid catalyst. Renewable Energy 224, DOI: 10.1016/J.RENENE.2024.120145.
 
31.
Mustaffa et al. 2014 – Mustaffa, N., Khalid, A., Sies, M.F., Zakaria, H. and Manshoor, B. 2014. Preheated biodiesel derived from vegetable oil on performance and emissions of diesel engines: A review. Applied Mechanics and Materials 465–466, pp. 285–290, DOI: 10.4028/www.scientific.net/AMM.465-466.285.
 
32.
Pushparaj et al. 2015 – Pushparaj, T., Ramabalan, S. and Selvan, V.A.M. (2015). Performance and emission characteristics of CI engine, fuelled with diesel and oxygenated fuel blends. International Journal of Global Warming 7(2), pp. 173–183, DOI: 10.1504/IJGW.2015.067748.
 
33.
Qenawy et al. 2024 – Qenawy, M., Khalaf, M., Wang, J., Tian, J., Zuo, L., Mustafa, H.M.M. and Esmail, M.F.C. 2024. Performance and emission of extracted biodiesel from mixed Jatropha-Castor seeds. Fuel 357, DOI: 10.1016/j.fuel.2023.130060.
 
34.
Raghu, R. and Ramadoss, G. 2011. Optimization of injection timing and injection pressure of a DI diesel engine fueled with preheated rice bran oil. International Journal of Energy and Environment 2(4), pp. 661–670.
 
35.
Ramesh, A. 2016. Performance and Emission Characteristics of CI Engine Fuelled with Coconut Testa Biodiesel. Journal of Environmental Research and Development 4(1), pp. 777–782, DOI: 10.15680/IJIRSET.2016.0505629.
 
36.
Ramesh et al. 2008 – Ramesh, D., Sampathrajan, A. and Nadu, T. 2008. Investigations on Performance and Emission Characteristics of Diesel Engine with Jatropha Biodiesel and Its Blends. Journal of Renewable Energy X(3), pp. 1–13.
 
37.
Rao et al. 2007 – Rao, G.L.N., Prasad, B.D., Sampath, S. and Rajagopal, K. 2007. Combustion analysis of diesel engine fueled with Jatropha oil methy Lester-diesel blends. International Journal of Green Energy 4(6), 645–658, DOI: 10.1080/15435070701665446.
 
38.
Satyanarayana, M. and Muraleedharan, C. 2012. Experimental studies on performance and emission characteristics of neat preheated vegetable oils in a di diesel engine. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 34(18), pp. 1710–1722, DOI: 10.1080/15567036.2010.485172.
 
39.
Senthil Kumar et al. 2003 – Senthil Kumar, M., Ramesh, A. and Nagalingam, B. 2003. An experimental comparison of methods to use methanol and Jatropha oil in a compression ignition engine. Biomass and Bioenergy 25(3), pp. 309–318, DOI: 10.1016/S0961-9534(03)00018-7.
 
40.
Shah et al. 2004 – Shah, S., Sharma, A. and Gupta, M.N. 2004. Extraction of oil from Jatropha curcas L. seed kernels by enzyme assisted three phase partitioning. Industrial Crops and Products 20(3), pp. 275–279, DOI: 10.1016/j.indcrop.2003.10.010.
 
41.
Shah et al. 2005 – Shah, S., Sharma, A. and Gupta, M.N. 2005. Extraction of oil from Jatropha curcas L. seed kernels by combination of ultrasonication and aqueous enzymatic oil extraction. Bioresource Technology 96(1), pp. 121–123, DOI: 10.1016/j.biortech.2004.02.026.
 
42.
Singh, B.P. 2013. Performance and emission characteristics of conventional engine running on jatropha oil. Journal of Mechanical Science and Technology 27(8), pp. 2569–2574, DOI: 10.1007/s12206-013-0641-6.
 
43.
Sorate et al. 2011 – Sorate, K.A., Bhor, S.K., Deshmukh, P.A. and Sable, M.J. 2011. Experimental Investigation for Blended Jatropha Bio-diesel as an Alternative Fuel in Compression Ignition Engine. International Journal of Engineering 4(3), pp. 343–349.
 
44.
Suresh et al. 2012 – Suresh, R., Raddy, S. and Yathish, K.V. 2012. Experimental Investigation of Diesel Engine Using Blends of Jatropha Methyl Ester as Alternative Fuel. International Journal of Emerging Technology and Advanced Engineering 2(7), pp. 419–428.
 
45.
Telgane et al. 2021 – Telgane, V., Godiganur, S., Keerthi Kumar, N. and Chandrashekar, T.K. 2021. Performance and emission characteristics of c.I engine fuelled with hybrid biodiesel. International Journal of Vehicle Structures and Systems 13(1), pp. 6–9, DOI: 10.4273/ijvss.13.1.02.
 
46.
Vajja, S.R. and Murali, R.B.V. 2016. Performance Evaluation of Diesel Engine with Preheated Bio Diesel with Additives. IOP Conference Series: Materials Science and Engineering 149(1), DOI: 10.1088/1757-899X/149/1/012206.
 
eISSN:2720-569X
ISSN:1429-6675
Journals System - logo
Scroll to top