Analysis of the current state and development of direct carbon fuel cells with an alkaline electrolyte
A. Kacprzak 1  
 
More details
Hide details
1
Częstochowa University of Technology, Faculty of Infrastructure and Environment, Department of Energy Engineering, Częstochowa
Publication date: 2018-12-31
 
Polityka Energetyczna – Energy Policy Journal 2018;21(4):87–102
 
KEYWORDS
ABSTRACT
Among the numerous modern, high-efficiency energy technologies allowing for the conversion of chemical energy of coal into electricity and heat, the Direct Carbon Fuel Cells (DCFC) deserve special attention. These are devices that allow, as the only one among all types of fuel cells, to directly convert the chemical energy contained in solid fuel (coal) into electricity. In addition, they are characterized by high efficiency and low emission of pollutants. The paper reviews and discusses previous research and development works, both around the world and in Poland, into the technology of direct carbon fuel cells with an alkaline (hydroxide) electrolyte.
METADATA IN OTHER LANGUAGES:
Polish
Analiza obecnego stanu rozwoju technologii węglowych ogniw paliwowych z elektrolitem alkalicznym
węglowe ogniwo paliwowe, elektrolit alkaliczny, wysokosprawna technologia energetyczna, węgiel kopalny
Wśród wielu nowoczesnych, wysokosprawnych technologii energetycznych pozwalających na przetwarzanie energii chemicznej węgla w energię elektryczną i ciepło na szczególną uwagę zasługują węglowe ogniwa paliwowe (ang. Direct Carbon Fuel Cells – DCFC). Są to urządzenia, które umożliwiają, jako jedyne spośród wszystkich typów ogniw paliwowych, bezpośrednią konwersję energii chemicznej zawartej w paliwie stałym (węglu) w energię elektryczną. Ponadto charakteryzują się one wysoką sprawnością i niską emisją zanieczyszczeń. W artykule dokonano przeglądu i omówienia dotychczasowych prac badawczo-rozwojowych, prowadzonych zarówno na świecie, jak i w Polsce, nad technologią węglowych ogniw paliwowych z elektrolitem alkalicznym (wodorotlenkowym).
 
REFERENCES (21)
1.
Antal, M.J. and Nihous, G.C. 2008.Thermodynamics of an aqueous−alkaline/carbonate carbon fuel cell. Industrial & Engineering Chemistry Research vol. 47, iss. 7, pp. 2442−2448.
 
2.
Basu, P. ed. 2007. Recent Trends in Fuel Science and Technology. Springer and Anamaya, New Delhi, 375 pp.
 
3.
Guo et al. 2013 − Guo, L., Calo, J.M., DiCocco, E. and Bain, E.J. 2013. Development of a Low Temperature, Molten Hydroxide Direct Carbon Fuel Cell. Energy & Fuels vol. 27, iss. 3, pp. 1712−1719.
 
4.
Guo et al. 2014 − Guo, L., Calo, J. M., Kearney, C. and Grimshaw, P. 2014.The anodic reaction zone and performance of different carbonaceous fuels in a batch molten hydroxide direct carbon fuel cell. Applied Energy vol. 129, pp. 32−38.
 
5.
Hackett et al. 2007 − Hackett, G.A., Zondlo, J.W. and Svensson, R. 2007. Evaluation of Carbon Materials for Use in a Direct Carbon Fuel Cell. Journal of Power Sources vol. 168, pp. 111–118.
 
6.
Jacques, W.W. 1986. Method of Converting Potential Energy of Carbon Into Electrical Energy, US patent 555511, 1896.
 
7.
Kacprzak et al. 2013a − Kacprzak, A., Włodarczyk, R., Kobyłecki, R., Ścisłowska, M. and Bis, I. 2013a. Fuel Cell as Part of Clean Technologies. [In:] Pawłowski A., Dudzińska M.R., Pawłowski L. (ed.) Environmental Engineering IV, CRC Press, Taylor & Francis Group, London, pp. 443−450.
 
8.
Kacprzak et al. 2013b − Kacprzak, A., Kobyłecki, R. and Bis, I. 2013b. The effects of Operating Conditions on the Performance of a Direct Carbon Fuel Cell. Archives of Thermodynamics vol. 34, iss. 4, pp. 187−197.
 
9.
Kacprzak et al. 2013c − Kacprzak, A., Kobyłecki, R. and Bis, I. 2013c.Influence of Temperature and Composition of NaOH−KOH and NaOH−LiOH Electrolytes on the Performance of a Direct Carbon Fuel Cell. Journal of Power Sources vol. 239, pp. 409−414.
 
10.
Kacprzak et al. 2014 − Kacprzak, A., Kobyłecki, R., Włodarczyk, R. and Bis, I. 2014. The Effect of Fuel Type on the Performance of a Direct Carbon Fuel Cell with Molten Alkaline Electrolyte. Journal of Power Sources vol. 255, pp. 179−186.
 
11.
Kacprzak et al. 2016 − Kacprzak, A., Kobyłecki, R., Włodarczyk, R. and Bis, I. 2016. Efficiency of non−optimized direct carbon fuel cell with molten alkaline electrolyte fueled by carbonized biomasp. Journal of Power Sources vol. 321, pp. 233–240.
 
12.
Lowry, H.H. ed. 1945. Direct Generation of Electrical energy from Coal and Gas (Fuel Cells). Wiley, New York.
 
13.
Nunoura et al 2007 − Nunoura, V., Dowaki, K., Fushimi, C., Allen, P., Mészáros, E. and Antal, M.J., 2007. Performance of a First−Generation, Aqueous−Alkaline Biocarbon Fuel Cell. Industrial & Engineering Chemistry Research vol. 46, iss. 3, pp. 734−744.
 
14.
Patton, E.M. 2003. Sara’s Direct Carbon Fuel Cell. Direct Carbon Fuel Cell Workshop, NETL, Pittsburgh (USA).
 
15.
Patton, E.M. and Zecevic, P. 2005.Assessment of Direct Carbon Fuel Cells, EPRI report No. 1011496, Palo Alto, California, USA, p. 64.
 
16.
Report... 2016a. BP Energy Outlook, 2016 Edition: Outlook to 2035, British Petroleum, 2016.
 
17.
Report... 2016b. International Energy Agency, Energy Policies of IEA Countries – Poland 2016 Review.
 
18.
Report... 2017. International Energy Agency, World Energy Outlook 2017, Paris, November 2017.
 
19.
Wolk 2007. Wolk R. H., Lux P., Gelber P., Holcomb F. H., 2007 −Direct Carbon Fuel Cells: Converting Waste to Electrical energy, Report No. ERDC/CERL TR−07−32, U. P. Army Corps of Engineers.
 
20.
Zecevic et al. 2003 − Zecevic, P., Patton, E.M. and Parhami, P. 2003. Electrochemistry of Direct Carbon Fuel Cell Based on Molten Hydroxide Electrolyte. Direct Carbon Fuel Cell Workshop, Pittsburgh (USA).
 
21.
Zecevic et al. 2005 − Zecevic, P., Patton, E.M. and Parhami, P. 2005. Direct Electrochemical Power Generation From Carbon in Fuel Cells With Molten Hydroxide Electrolyte. Chemical Engineering Communications vol. 192, iss. 12, pp. 1655–1670.
 
ISSN:1429-6675