ORIGINAL PAPER
Development of waste-free technology for processing of all types of limestone waste using solar energy
 
More details
Hide details
1
Yessenov University, Kazakhstan
 
 
Submission date: 2024-07-03
 
 
Final revision date: 2024-09-12
 
 
Acceptance date: 2024-09-25
 
 
Publication date: 2025-03-27
 
 
Corresponding author
Kalyy Yerzhanov   

Yessenov University, Kazakhstan
 
 
Polityka Energetyczna – Energy Policy Journal 2025;28(1):33-54
 
KEYWORDS
TOPICS
ABSTRACT
In light of growing environmental concerns and the gradual depletion of conventional energy sources, the development of an efficient technology to process all types of limestone waste using solar energy becomes a crucial step towards a sustainable and environmentally friendly industry. The purpose of this study was to create an innovative technology that can efficiently process various limestone wastes with minimal environmental impact and utilize solar energy as the primary energy source. The study used data on geographical coordinates, solar radiation, hours of sunlight, radiation, climate, and lighting conditions of the Republic of Kazakhstan to assess the potential of solar energy and its impact on the radiation balance and climatic conditions of the country. The creation of innovative technology for processing limestone waste to produce a new building material will reduce the cost of stone extraction, minimize waste accumulation, and improve the environmental situation. This is achieved by optimizing the processing using solar energy, which contributes to the environmental sustainability of production and reduces the consumption of fuel and energy resources in concrete production. The study involved both theoretical and practical experiments to optimise the technological processes of limestone waste processing using solar energy. Furthermore, the environmental conditions of the quarries and solar energy resources were analyzed for the application of solar technology.
CONFLICT OF INTEREST
The Authors have no conflicts of interest to declare
METADATA IN OTHER LANGUAGES:
Polish
Opracowanie bezodpadowej technologii przetwarzania wszelkiego rodzaju odpadów wapiennych przy wykorzystaniu energii słonecznej
analiza zasobów, promieniowanie bezpośrednie, coquina, heliostruktury, skała
W świetle rosnących obaw o środowisko i stopniowego wyczerpywania się konwencjonalnych źródeł energii, opracowanie wydajnej technologii przetwarzania wszystkich rodzajów odpadów wapiennych przy użyciu energii słonecznej staje się kluczowym krokiem w kierunku zrównoważonego i przyjaznego dla środowiska przemysłu. Celem tego artykułu było stworzenie innowacyjnej technologii, która może skutecznie przetwarzać różne odpady wapienne przy minimalnym wpływie na środowisko i wykorzystywać energię słoneczną jako główne źródło energii. W badaniu wykorzystano dane dotyczące współrzędnych geograficznych, promieniowania słonecznego, godzin nasłonecznienia, promieniowania, klimatu i warunków oświetleniowych Republiki Kazachstanu w celu oceny potencjału energii słonecznej i jej wpływu na bilans promieniowania i warunki klimatyczne kraju. Stworzenie innowacyjnej technologii przetwarzania odpadów wapiennych w celu produkcji nowego materiału budowlanego obniży koszty wydobycia kamienia, zminimalizuje gromadzenie się odpadów i poprawi sytuację środowiskową. Osiąga się to poprzez optymalizację przetwarzania przy użyciu energii słonecznej, co przyczynia się do zrównoważenia środowiskowego produkcji i zmniejszenia zużycie paliwa i zasobów energetycznych w produkcji betonu. Badanie obejmowało zarówno teoretyczne, jak i praktyczne eksperymenty mające na celu optymalizację procesów technologicznych przetwarzania odpadów wapiennych z wykorzystaniem energii słonecznej. Ponadto przeanalizowano warunki środowiskowe kamieniołomów i zasoby energii słonecznej pod kątem zastosowania technologii słonecznej.
REFERENCES (35)
1.
Abdibattayeva et al. 2020 – Abdibattayeva, M., Bissenov, K., Zhubandykova, Z., Orynbassar, R. and Tastanova, L. 2020. Complex Oil-containing Waste Treatment by Applying Solar Energy. Environmental and Climate Technologies 24(1), pp. 718–739. DOI: 10.2478/rtuect-2020-0045.
 
2.
Almadani et al. 2022 – Almadani, M., Razak, R.A., Abdullah, M.M.A.B. and Mohamed, R. 2022. Geopolymer-based artificial aggregates: A review on methods of producing, properties, and improving techniques. Materials 15(16), p. 5516, DOI: 10.3390/ma15165516.
 
3.
Babak et al. 2005 – Babak, V., Filonenko, S. and Kalita, V. 2005. Acoustic emission under temperature tests of materials. Aviation 9(4), pp. 24–28, DOI: 10.1080/16487788.2005.9635914.
 
4.
Bek et al. 2022 – Bek, A.A., Yestemesov, Z.A., Nurpeisova, M.B., Suvorov, A.S. and Dadin, A.D. 2022. Embedded mixtures based on limestone tailings. News of the Academy of Sciences of the Republic of Kazakhstan. Chemistry and Technology Series 450(1), pp. 11–19.
 
5.
Buzhyn, O. 2023. Environmental safety management – classification method of solid combustible fossils. Ecological Safety and Balanced Use of Resources 14(1), pp. 33–42, DOI: 10.31471/2415-3184-2023-1(27)-33-42.
 
6.
Chen et al. 2022 – Chen, X., Capiau, L., Reynaert, I., Zheng, K., Gruyaert, E. and Li, J. 2022. Comparative study on modeling concrete properties using physical and mechanical properties of recycled coarse aggregate. Construction and Building Materials 345, DOI: 10.1016/j.conbuildmat.2022.128249.
 
7.
Compernolle et al. 2023 – Compernolle, T., Eswaran, A., Welkenhuysen, K., Hermans, T., Walraevens, K., van Camp, M., Buyle, M., Audenaert, A., Bleys, B., van Schoubroeck, S., Bergmans, A., Goderniaux, P., Baele, J.M., Kaufmann, O., Vardon, P.J., Daniilidis, A., Orban, P., Dassargues, A., Serge, B. and Piessens, K. 2023. Towards a dynamic and sustainable management of geological resources. Geological Society, London, Special Publications 528, pp. 101–121, DOI: 10.1144/SP528-2022-75.
 
8.
da Silva et al. 2023 – da Silva, S.R., de Brito, J. and de Oliveira Andrade, J.J. 2023. Synergistic effect of recycled aggregate, fly ash, and hydrated lime in concrete production. Journal of Building Engineering 70, DOI: 10.1016/j.jobe.2023.106370.
 
9.
Fidanchevski et al. 2022 – Fidanchevski, E., Šter, K., Mrak, M., Kljajević, L., Žibret, G., Teran, K., Poletanovic, B., Fidanchevska, M., Dolenec, S. and Merta, I. 2022. The valorisation of selected quarry and mine waste for sustainable cement production within the concept of circular economy. Sustainability 14(11), DOI: 10.3390/su14116833.
 
10.
Floqi et al. 2009 – Floqi, T., Shumka, S., Malollari, I., Vezi, D. and Shabani, L. 2009. Environment and sustainable development of the Prespa park. Journal of Environmental Protection and Ecology 10(1), pp. 163–175.
 
11.
Gao et al. 2023 – Gao, Q., Li, X.G., Jiang, S.Q., Lyu, X.J., Gao, X., Zhu, X.N. and Zhang, Y.Q. 2023. Review on zero waste strategy for urban construction and demolition waste: Full component resource utilization approach for sustainable and low-carbon. Construction and Building Materials 395, DOI: 10.1016/j.conbuildmat.2023.132354.
 
12.
Hein et al. 2020 – Hein, J.R., Koschinsky, A. and Kuhn, T. 2020. Deep-ocean polymetallic nodules as a resource for critical materials. Nature Reviews Earth & Environment 1, pp. 158–169, DOI: 10.1038/s43017-020-0027-0.
 
13.
Ikram et al. 2021 – Ikram, M., Ferasso, M., Sroufe, R. and Zhang, Q. 2021. Assessing green technology indicators for cleaner production and sustainable investments in a developing country context. Journal of Cleaner Production 322, DOI: 10.1016/j.jclepro.2021.129090.
 
14.
Jain et al. 2023 – Jain, M., Kumar, A. and Kumar, A. 2023. Landfill mining: A review on material recovery and its utilization challenges. Process Safety and Environmental Protection 169, pp. 948–958, DOI: 10.1016/j.psep.2022.11.049.
 
15.
Kolesnikova et al. 2023 – Kolesnikova, I.V., Suvorov, A.S. and Bekturganova, N.Y. 2023. Analysis of prospects for the use of local raw materials for the production of self-sealing concretes in the Republic of Kazakhstan. Bulletin of Kazakh Leading Academy of Architecture and Construction 90(4), pp. 110––124.
 
16.
Lyubchyk et al. 2015 – Lyubchyk, A., Filonovich, S.A., Mateus, T., Mendes, M.J., Vicente, A., Leitão, J.P., Falcão, B.P., Fortunato, E., Águas, H. and Martins, R. 2015. Nanocrystalline thin film silicon solar cells: A deeper look into p/i interface formation. Thin Solid Films 591, pp. 25–31, DOI: 10.1016/j.tsf.2015.08.016 .
 
17.
Mittal, N. and Anand, S. 2022. Reductive ammonia leaching process for metal recovery from polymetallic nodules: Can there be a zero waste approach? [In:] Perspectives on Deep-Sea Mining: Sustainability, Technology, Environmental Policy and Management, pp. 263–277, Cham: Springer, DOI: 10.1007/978-3-030-87982-2_10.
 
18.
Moreno-SanSegundo et al. 2022 – Moreno-SanSegundo, J., Martín-Sómer, M. and Marugán, J. 2022. Dynamic concentration factor: A novel parameter for the rigorous evaluation of solar compound parabolic collectors. Chemical Engineering Journal 437, DOI: 10.1016/j.cej.2022.135360.
 
19.
Nurmanova et al. 2024 – Nurmanova, S., Kolisnichenko, S., Sagmedinov, D. and Kalambayeva, G. 2024. Innovative approaches to improving the efficiency of transport engines in mobile drilling rigs in the oil and gas industry. Bulletin of Kazakh Academy of Transport and Communications named after M. Tynyshpayev 130(1), pp. 426–438.
 
20.
Ondo Zue Abaga et al. 2023 – Ondo Zue Abaga, N., Nfoumou, V. and Makaya M’Voubou. 2023. Influence of the parent rock nature on the mineralogical and geochemical composition of ferralsols used for sedentary agriculture in the Paleoproterozoic Franceville sub-basin (Gabon). International Journal of Biological and Chemical Sciences 17(4), pp. 1778–1789. DOI: 10.4314/ijbcs.v17i4.38.
 
21.
Ospanov et al. 2023 – Ospanov, Zh., Maydyrova, A.B. and Biryukov, V. 2023. Development trends of mining enterprises of the Republic of Kazakhstan. Bulletin of L.N. Gumilyov Eurasian National University, Economic Series 3, pp. 153–162.
 
22.
Palianytsia et al. 2014 – Palianytsia, B., Kulik, T., Dudik, O., Cherniavska, T. and Tonkha, O. 2014. Study of the thermal decomposition of some components of biomass by desorption mass spectrometry. Springer Proceedings in Physics 155, pp. 19–25, DOI: 10.1007/978-3-319-05521-3_3.
 
23.
Pona, Y. and Ouedrago, I. 2023. Inclusive institutions around natural resources characteristics and challenge: a case study in the central Niger delta of Mali. International Journal of Biological and Chemical Sciences 17(2), pp. 618–629, DOI: 10.4314/ijbcs.v17i2.26.
 
24.
Rahman et al. 2022 – Rahman, M., Khan, I., Field, D.L., Techato, K. and Alameh, K. 2022. Powering agriculture: Present status, future potential, and challenges of renewable energy applications. Renewable Energy 188, pp. 731–749, DOI: 10.1016/j.renene.2022.02.065.
 
25.
Rahman, A. and Amritphale, S. 2023. Advanced geopolymer: Utilizing industrial waste to material to achieve zero waste. [In:] Advanced Materials from Recycled Waste, pp. 255–272. Amsterdam: Elsevier, DOI: 10.1016/B978-0-323-85604-1.00002-0.
 
26.
Sadykov et al. 2024 – Sadykov, M., Temirbaeva, N., Narymbetov, M., Toktonaliev, B. and Nariev, Z. 2024. Comparative analysis of the efficiency of hydro, wind, and solar power plants in Kyrgyzstan. Machinery & Energetics 15(2), pp. 106–117, DOI: 10.31548/machinery/2.2024.106.
 
27.
Selvakumar et al. 2024 – Selvakumar, R.D., Wu, J. and Alkaabi, A.K. 2024. Electrohydrodynamic acceleration of charging process in a latent heat thermal energy storage module. Applied Thermal Engineering 242, DOI: 10.1016/j.applthermaleng.2024.122475.
 
28.
Shakulikova, G.T. and Akhmetov, S.M. 2021. The role of the “green economy” in the sustainable development of ecological and economic systems of Kazakhstan. Oil and Gas 126(6), pp. 13–37, DOI: 10.37878/2708-0080/2021-6.01.
 
29.
Soharu et al. 2021 – Soharu, A., Naveen, B.P. and Sil, A. 2021. An approach towards zero-waste building construction. [In:] Advances in Construction Materials and Sustainable Environment, pp. 239–257, Singapore: Springer, DOI: 10.1007/978-981-16-6557-8_19.
 
30.
Syrlybayev et al. 2016 – Syrlybayev, M.K., Saimova, S.A., Tassova, A.M., Suleimenova, S.Zh., Kussainov, K.Kh., Khussainova, L.I., Zhumanova, M.K. and Askarova, A.O. 2016. Incorporation of environmental law requirements during waste management at rubbish recycling plants in the Republic of Kazakhstan. Indian Journal of Science and Technology 9(44), DOI: 10.17485/ijst/2016/v9i44/105473.
 
31.
Taha et al. 2021 – Taha, Y., Elghali, A., Hakkou, R. and Benzaazoua, M. 2021. Towards zero solid waste in the sedimentary phosphate industry: Challenges and opportunities. Minerals 11(11), DOI: 10.3390/min11111250.
 
32.
Vyshnevska et al. 2022 – Vyshnevska, Y., Ladychenko, V., Uliutina, O., Kanaryk, J. and Movchun, S. 2022. Regulatory and legal provision of alternative sources of energy as a component of the energy sector of the economy. Economics and Policy of Energy and the Environment 2022(1), pp. 119–130, DOI: 10.3280/EFE2022-001007.
 
33.
Yang et al. 2022 – Yang, J., Firsbach, F. and Sohn, I. 2022. Pyrometallurgical processing of ferrous slag “co-product” zero waste full utilization: A critical review. Resources, Conservation and Recycling 178, DOI: 10.1016/j.resconrec.2021.106021.
 
34.
Yu et al. 2023 – Yu, K., Jia, M., Yang, Y. and Liu, Y. 2023. A clean strategy of concrete curing in cold climate: Solar thermal energy storage based on phase change material. Applied Energy 331, DOI: 10.1016/j.apenergy.2022.120375.
 
35.
Zhakupova, U.A. and Tsygulev, D.V. 2023. Environmental problems in construction: Experience in carrying out green events. [In:] Proceedings of the International Scientific and Practical Conference: “Environmental Problems in Colleges and Schools: Experience of Green Events”, pp. 143–147, Astana: L.N. Gumilyov Eurasian National University.
 
eISSN:2720-569X
ISSN:1429-6675
Journals System - logo
Scroll to top