ORIGINAL PAPER
Problems of increasing the reliability of electrical energy transmission via high-voltage power lines in conditions of increased climate risk
More details
Hide details
1
Satbayev University, Kazakhstan
2
Almaty Technological University, Kazakhstan
3
Almaty University of Power Engineering and Telecommunications, Kazakhstan
Submission date: 2024-06-27
Final revision date: 2024-09-19
Acceptance date: 2024-09-25
Publication date: 2025-04-07
Polityka Energetyczna – Energy Policy Journal 2025;28(1):5-32
KEYWORDS
TOPICS
ABSTRACT
In this article, the subject of investigation is high-voltage overhead transmission lines. As known, such lines exhibit the phenomenon of “conductor galloping.” Conductor galloping involves low-frequency oscillations with a significant amplitude, typically occurring during windy and icy conditions. These oscillations can be considered a factor that reduces the reliability of the power supply. This article aims to enhance the efficiency of using high-voltage overhead transmission lines under ice and wind conditions through the systematization of scattered information and knowledge, as well as the potential for discovering new directions in the study of conductor galloping. The analysis includes examining the results of multi-year statistical data observations on conductor galloping in power systems. Theoretical models of galloping are considered based on equations of dynamics and energy balance. Experimental data is obtained by observing a conductor galloping at a test site with the registration of vibration parameters. General reliability issues of overhead transmission lines are addressed. Results of statistical studies are analyzed, covering the complex conditions favoring the occurrence of conductor galloping, typical damages to elements of power lines, and an assessment of the expected intensity of galloping. The article presents the results from theoretical and experimental research, including physical and mathematical models of conductor galloping, conditions for instability of icy conductors in a wind flow, and some findings from experiments conducted at the test site. Methods to combat the phenomenon of “conductor galloping” are identified, providing a brief overview and analysis of existing measures to suppress conductor galloping. Suggestions are made for using the most effective and economical damper for conductor galloping in the split phase of the power line. The data presented in the article reveal key issues related to conductor galloping, existing methods for their resolution, and new avenues for researching this phenomenon and promising ideas.
CONFLICT OF INTEREST
The Authors have no conflicts of interest to declare
METADATA IN OTHER LANGUAGES:
Polish
Problemy zwiększania niezawodności przesyłu energii elektrycznej liniami wysokiego napięcia w warunkach zwiększonego ryzyka klimatycznego
galopowanie przewodów, wpływy lodu i wiatru, bilans energetyczny, drgania przewodów, samooscylacje
W niniejszym artykule przedmiotem badania są napowietrzne linie przesyłowe wysokiego napięcia. Jak wiadomo, takie linie wykazują zjawisko „galopowania przewodów”. Polega ono na niskoczęstotliwościowych oscylacjach o znaczącej amplitudzie, które zazwyczaj występują podczas wietrznych i oblodzonych warunków. Te oscylacje mogą być uznane za czynnik zmniejszający niezawodność dostaw energii. Celem tego artykułu jest zwiększenie efektywności wykorzystania napowietrznych linii przesyłowych wysokiego napięcia w warunkach lodu i wiatru poprzez systematyzację rozproszonej informacji i wiedzy, jak również potencjalne odkrycie nowych kierunków badań nad tym zjawiskiem. Analiza obejmuje badanie wyników wieloletnich obserwacji danych statystycznych dotyczących galopowania przewodów w systemach energetycznych. Modele teoretyczne tego zjawiska są rozważane na podstawie równań dynamiki i bilansu energetycznego. Dane eksperymentalne są uzyskiwane poprzez obserwację galopowania przewodów na poligonie testowym z rejestracją parametrów wibracji. Poruszono ogólne kwestie niezawodności napowietrznych linii przesyłowych. Analizowane są wyniki badań statystycznych, obejmujących złożone warunki sprzyjające występowaniu galopowania przewodów, typowe uszkodzenia elementów linii energetycznych oraz ocena spodziewanej intensywności galopowania. Artykuł przedstawia wyniki badań teoretycznych i eksperymentalnych, w tym fizyczne i matematyczne modele galopowania przewodów, warunki niestabilności oblodzonych przewodów w strumieniu wiatru oraz niektóre wyniki eksperymentów przeprowadzonych na poligonie testowym. Zidentyfikowane są metody przeciwdziałania zjawisku „galopowania przewodów”, przedstawiając krótki przegląd i analizę istniejących środków tłumienia tego zjawiska. Zaproponowano zastosowanie najskuteczniejszego i ekonomicznego tłumika dla galopowania przewodów w podziale faz linii energetycznej. Dane przedstawione w artykule ujawniają kluczowe problemy związane z galopowaniem przewodów, istniejące metody ich rozwiązania, a także nowe kierunki badań nad tym zjawiskiem i obiecujące pomysły.
REFERENCES (62)
1.
Bekmetiev et. al. 1979 – Bekmetiev, R.M., Zhakaev, A.Sh. and Shirinsky, N.V. 1979. Gallop of the conductors of overhead transmission lines. Almaty: “Nauka” KazSSR.
2.
Bendík et. al. 2023 – Bendík, J., Cenký, M. and Hromkovič, O. 2023. Energy harvesting device for smart monitoring of MV overhead transmission lines – Theoretical concept and experimental construction. Sensors 23(17), DOI: 10.3390/s23177538.
3.
Blevins, R.D. and Iwan, W.D. 1974. The galloping response of a two-degree-of-freedom system. Journal of Applied Mechanics 41(4), pp. 1113–1118.
4.
Chabart, O. and Lilien, J.L. 1998. Galloping of electrical lines in wind tunnel facilities. Journal of Wind Engineering and Industrial Aerodynamics 74–76, pp. 967–976, DOI: 10.1016/S0167-6105(98)00088-9.
5.
Danilin et. al. 2007 – Danilin, A.N., Shklyarchuk, F.N., Lilien, J.-L., Snegovskiy, D.V., Vinogradov, A.A. and Djamanbayev, M.A. 2007. Nonlinear aeroelastic vibrations and galloping of iced conductor lines under wind. [In:] 7th International Symposium on Cable Dynamics, pp. 129–134, Vienna: ISDAC.
6.
Den Hartog, J.P. 1985. Mechanical vibrations. New York: Dover Publications.
7.
Djamanbayev et. al. 2017 – Dzamanbaev, M.A., Abitaeva, R.Sh. and Kasymov, A. 2017. Evaluation of favourable speed range of wind flow, the exciting galloping conductors. Bulletin of Satbayev University 2(120), pp. 72–76.
8.
Djamanbayev et. al. 2020 – Djamanbayev, М.А., Karataeva, J.Е. and Dzhumabekova, Z.A. 2020. Auto-oscillations of conductors of high-voltage power lines (anchor span). Bulletin of Almaty Technological University 127(2), pp. 54–60.
9.
Egbert, R.T. 1986. Estimation of maximum amplitudes of conductor galloping by describing function analysis. IEEE Transactions on Power Delivery 1(1), pp. 251–257.
10.
Glebov, E.S. 1965. Gallop of conductors on overhead transmission lines 500 kV. Moscow: “BTI ORGRES”.
11.
Gorin et. al. 2009 – Gorin, V.Ya., Davidson, N.N. and Marasina, E.A. 2009. Methodology for determining the critical wind speed during the gallop of the conductors of overhead transmission lines. Scientific Works of Donetsk National Technical University 7(128), pp. 52–57.
12.
Grebchenko, N. and Kozhukhar, A. 2018. System for diagnostics and protection against earth faults of cable and overhead lines 6-35 kv. Machinery & Energetics 283, pp. 67–75.
13.
Gulyaev et. al. 2015 – Gulyaev, I.P., Dolmatov, A.V., Kharlamov, M.Y., Gulyaev, P.Yu., Jordan, V.I., Krivtsun, I.V., Korzhyk, V.M. and Demyanov, O.I. 2015. Arc-Plasma Wire Spraying: An Optical Study of Process Phenomenology. Journal of Thermal Spray Technology 24(8), pp. 1566–1573.
14.
Hruban et. al. 2023 – Hruban, V., Honcharenko, I., Martynenko, V. and Sadovoy, O. 2023. Obtaining Electricity Through The Use of Biogas, Investments And Perspectives. [In:] Proceedings of the 5th International Conference on Modern Electrical and Energy System, MEES 2023. Kremenchuk: Institute of Electrical and Electronics Engineers. DOI: 10.1109/MEES61502.2023.10402480.
15.
Hunt, J.C.R. and Richards, D.J.W. 1969. Overhead-line oscillations and the effect of aerodynamic dampers. Proceedings of the Institution of Electrical Engineers 116(11), pp. 1869–1874.
16.
Imamov et. al. 2019 – Imamov, E.Z., Muminov, R.A., Jalalov, T.A. and Karimov, Kh.N. 2019. Optimization of the properties of silicon solar cell. [In:] Proceedings of International Scientific-Practical Conference “Auezov Readings – 17: New Impulses of Science and Spirituality in the World Space”, pp. 162–164. Shymkent: Mukhtar Auezov South Kazakhstan University.
17.
Jamali-Abnavi et. al. 2021 – Jamali-Abnavi, A., Hashemi-Dezaki, H., Ahmadi, A., Mahdavimanesh, E. and Tavakoli, M.J. 2021. Harmonic-based thermal analysis of electric arc furnace’s power cables considering even current harmonics, forced convection, operational scheduling, and environmental conditions. International Journal of Thermal Sciences 170, DOI: 10.1016/j.ijthermalsci.2021.107135.
18.
Jones, K.F. 1992. Coupled vertical and horizontal galloping. Journal of Engineering Mechanics 118(1), pp. 92–107.
19.
Juraeva, D.Kh. 2021. Development of the market for services to provide electricity to the population: status and prospects (based on materials from the city of Dushanbe). Dushanbe: Center for Strategic Studies under the President of the Republic of Tajikistan.
20.
Kaplun et. al. 2023 – Kaplun, V., Gai, O., Stetsyuk, P. and Ivlichev, A. 2023. Provision of optimal dispatching scenarios for regional power systems in the face of uncontrollable power shortages. Machinery & Energetics 14(2), pp. 23–33, DOI: 10.31548/machinery/2.2023.23.
21.
Kharlamov et. al. 2014 – Kharlamov, M.Yu., Krivtsun, I.V. and Korzhyk, V.N. 2014. Dynamic model of the wire dispersion process in plasma-Arc spraying. Journal of Thermal Spray Technology 23(3), pp. 420–430, DOI: 10.1007/s11666-013-0027-4.
22.
Knapik, M. 2019. The influence of pipe diameter selection on operating costs of heating installation in the context of the anticipated increase in electricity prices. E3S Web of Conferences 100, DOI: 10.1051/e3sconf/201910000034.
23.
Korobskyy, V. and Siroshtan, A. 2018. Energy losses in commutation electric arc. Machinery & Energetics 283, pp. 208–216.
24.
Landa, P.S. 2009. Stall flutter as one of mechanisms of transmission line selfoscillations. Applied Nonlinear Dynamics 2, pp. 3–15.
25.
Lieberman, A.Ya. 1974. Vibrations in the sections between the struts and the gallop of the conductors of high voltage lines. Moscow: VNIIE.
26.
Lilien, J.L. and Havard, D. 2000. Galloping data base on single and bundle conductors prediction of maximum amplitudes. IEEE Transactions on Power Delivery 15(2), pp. 670–674.
27.
Lovetskaya et. al. 1987 – Lovetskaya, E.N., Savvaitov, D.S. and Shkaptsov, V.A. 1987. Analysis of the cases of galloping conductors of 10–750 kV overhead lines. Power Stations 2, pp. 36–40.
28.
Luongo, A. and Piccardo, G. 2005. Linear instability mechanisms for coupled translational galloping. Journal of Sound and Vibration 288(4–5), pp. 1027–1047.
29.
McComber, P. and Paradis, A. 1998. A cable galloping model for thin ice accretions. Atmospheric Research 46(1–2), pp. 13–25.
30.
Meradi et. al. 2023 – Meradi, S., Benmansour, K. and Laribi, S. 2023. Failure analysis of medium voltage underground power cables based on voltage measurements. Journal of Failure Analysis and Prevention 23, pp. 1860–1868, DOI: 10.1007/s11668-023-01736-2.
31.
Mingzhe, H. and Macdonald, J. 2016. An analytical solution for the galloping stability of a 3 degree-of-freedom system based on quasi-steady theory. Journal of Fluids and Structures 60, pp. 23–36.
32.
Nakamura, Y. 1980. Galloping of bundled power line conductors. Journal of Sound and Vibration 73(3), pp. 363–377.
33.
Nigol, O. and Buchan, P.G. 1981. Conductor galloping part I – Den Hartog mechanism. IEEE Transactions on Power Apparatus and Systems 100(2), pp. 699–707.
34.
Nigol, O. and Clarke, G.J. 1974. Conductor galloping and control based on torsional mechanism. London: IEEE.
35.
Nikitas, N. and Macdonald, J.H.G. 2014. Misconceptions and generalisations of the Den Hartog galloping criterion. Journal of Engineering Mechanics 140(4), DOI: 10.1061/(ASCE)EM.1943-7889.0000697.
36.
Novak, M. and Tanaka, H. 1974. Effect of turbulence on galloping instability. Journal of the Engineering Mechanics Division 100(1), pp. 27–47.
37.
Polevoy, A.I. 1987. Conditions for the emergence of a gallop of conductors under the influence of wind and ice. Bulletin of Academy of Sciences of the USSR 6, pp. 49–58.
38.
Qawaqzeh et. al. 2020 – Qawaqzeh, M.Z., Szafraniec, A., Halko, S., Miroshnyk, O. and Zharkov, A. 2020. Modelling of a household electricity supply system based on a wind power plant. Przegląd Elektrotechniczny 96(11), pp. 36–40.
39.
Rácz et. al. 2023 – Rácz, L., Szabó, D., Göcsei, G. and Németh, B. 2023. Distributed thermal monitoring of high-voltage power lines. Sensors 23(5), DOI: 10.3390/s23052400.
40.
Rawlins, C.B. 1981. Analysis of conductor galloping field observations – single conductors. IEEE Transactions on Power Apparatus and Systems 100(8), pp. 3744–3753.
41.
Rawlins, C.B. 1986. Conductor galloping field observation analysis update. London: ALCOA Conductor Products Company.
42.
Riaz et. al. 1986 – Riaz, H., Biswas, S.K. and Ahmed, N.U. 1986. Stochastic modelling and stabilization of galloping transmission lines. Electric Power Systems Research 10(2), pp. 137–143.
43.
Richardson, A.S. 1982. The time line method for assessing galloping exposure. IEEE Transactions on Power Apparatus and Systems 101(8), pp. 2885–2891, DOI: 10.1109/TPAS.1982.317614.
44.
Rzhevsky, S.S. and Khvoles, E.A. 1977. Gallop of conductors on the 500 kV Bugulma-Beketova overhead line. Scientific Works of VNIIE 9, pp. 197–202.
45.
Serikuly et. al. 2020 – Serikuly, Z., Volnenko, A.A. and Kumisbekov, S.A. 2020. Optimum values regular structure converters for converting the vibration into electric energy. International Review of Mechanical Engineering 14(6), pp. 388–394, DOI: 10.15866/ireme.v14i6.18844.
46.
Serikuly et. al. 2022 – Serikuly, Z., Markert, B., Kumisbekov, S.A. and Baratov, R.J. 2022. Recommendations for the Design of an Installation for Wind Energy Conversion into Electrical Energy. International Review of Mechanical Engineering 16(1), pp. 1–5, DOI: 10.15866/ireme.v16i1.21060.
47.
Shkaptsov, V.A. 1991. Guidelines for zoning the territories of power systems and overhead lines by the frequency of repetition and intensity of the gallop of conductors. Moscow: VNIIE.
48.
Shklyarchuk, F.N. and Danilin, A.N. 2013. Nonlinear vibrations and galloping of conductor with icing. Bulletin of TulGU. Technical Science 11, pp. 188–197.
49.
Shu et. al. 2022 – Shu, Y., Kang, J., Fan, B., Yang, Q., Ma, Z. and Liang, F. 2022. Monitoring method of electricity safety status at customer side based on Internet of Things perception. [In:] International Conference on Internet of Things and Machine Learning (IoTML 2022), pp. 176–181, Harbin: SPIE.
50.
Sikorska et. al. 2024 – Sikorska, O., Ostra, N., Malogulko, J., Teptia, V. and Povstianko, K. 2024. Technical solutions to prevent blackouts in order to provide the population with electricity: The case of Ukraine. Machinery & Energetics 15(1), pp. 76–85, DOI: 10.31548/machinery/1.2024.76.
51.
Strebkov et. al. 2018 – Strebkov, D.S., Nekrasov, A.I. and Nekrasov, A.A. 2018. Resonant methods for electric power transmission and application. Machinery & Energetics 9(2), pp. 37–43.
52.
Szafraniec et. al. 2021 – Szafraniec, A., Halko, S., Miroshnyk, O., Figura, R., Zharkov, A. and Vershkov, O. 2021. Magnetic field parameters mathematical modelling of windelectric heater. Przegląd Elektrotechniczny 97(8), pp. 36–41, DOI: 10.15199/48.2021.08.07.
53.
Tang et. al. 2023 – Tang, W., Brown, K., Mitchell, D., Blanche, J. and Flynn, D. 2023. Subsea power cable health management using machine learning analysis of low-frequency wide-band sonar data. Energies 16(17), DOI: 10.3390/en16176172.
54.
Vanko, V.I. 1991. Mathematical model of the gallop of the power line conductor. Energetika 11, pp. 36–42.
55.
Vanko, V.I. and Marchevski, I.K. 2014. Transmission line-conductor galloping (galloping) – Lyapunov instability. Energetika 6, pp. 14–23.
56.
Xinmin et al. 2012 – Xinmin, L., Kuanjun, Z. and Bin, L. 2012. Research of experimental simulation on aerodynamic character for typed iced conductor. AASRI Procedia 2, pp. 106–111.
57.
Yakovlev, L.V. 1971. The physical essence of the gallop of conductors. Power Stations 10, pp. 45–49.
58.
Yazdani-Asrami et. al. 2022 – Yazdani-Asrami, M., Seyyedbarzegar, S., Sadeghi, A., de Sousa, W.T. and Kottonau, D. 2022. High temperature superconducting cables and their performance against short circuit faults: Current development, challenges, solutions, and future trends. Superconductor Science and Technology 35, 083002, DOI: 10.1088/1361-6668/ac7ae2.
59.
Yu et. al. 1992 – Yu, P., Shah, A.H. and Popplewell, N. 1992. Inertially coupled galloping of ice conductors. Journal of Applied Mechanics 59, pp. 141–145.
60.
Zhamanbaev et. al. 2020 – Zhamanbaev, M., Ilieva, D., Abitaeva, R. and Ongar, B. 2020. Determination of the minimum wind speed leading to the galloping of conductors. E3S Web of Conferences 180, DOI: 10.1051/e3sconf/202018004019.
61.
Zhang et. al. 2023 – Zhang, F., Guo, J., Yuan, F., Shi, Y., Tan, B. and Yao, D. 2023. Research on intelligent verification system of high voltage electric energy metering device based on power cloud. Electronics 12(11), DOI: 10.3390/electronics12112493.
62.
Zolriasatein et. al. 2022 – Zolriasatein, A., RajabiMashhadi, Z., Rezaei A.M., Noori, N.R. and Abyazi, S. 2022. A new approach based on RTV/SiO2 nano coating to tackling environmental pollution on electrical energy distributions. Journal of Renewable Energy and Environment 9(3), pp. 45–51, DOI: 10.30501/jree.2022.299858.1244.