ORIGINAL PAPER
Enhancing energy efficiency for optimal multiple photovoltaic distributed generators integration using inertia weight control strategies in PSO algorithms
 
More details
Hide details
1
Department of Electrical Engineering, Faculty of Technology, University of Batna 2, Algeria
 
2
Department of Electrotechnic, Faculty of Technology, Mentouri University of Constantine, Algeria
 
3
Electrical Department, Faculty of Technology and Education, Suez University, Egypt
 
4
Electrical Power Engineering Department, Faculty of Engineering, Cairo University, Egypt
 
 
Submission date: 2021-12-20
 
 
Final revision date: 2022-03-08
 
 
Acceptance date: 2022-03-08
 
 
Publication date: 2022-03-25
 
 
Corresponding author
Mohamed Zellagui   

Department of Electrical Engineering, Faculty of Technology, University of Batna 2, Fesdis, 05078, Batna, Algeria
 
 
Polityka Energetyczna – Energy Policy Journal 2022;25(1):59-88
 
KEYWORDS
TOPICS
ABSTRACT
Recently, interest in incorporating distributed generators (DGs) into electrical distribution networks has significantly increased throughout the globe due to the technological advancements that have led to lowering the cost of electricity, reducing power losses, enhancing power system reliability, and improving the voltage profile. These benefits can be maximized if the optimal allocation and sizing of DGs into a radial distribution system (RDS) are properly designed and developed. Getting the optimal location and size of DG units to be installed into an existing RDS depends on the various constraints, which are sometimes overlapping or contradicting. In the last decade, meta-heuristic search and optimization algorithms have been frequently developed to handle the constraints and obtain the optimal DG location and size. This paper proposes an efficient optimization technique to optimally allocate multiple DG units into a RDS. The proposed optimization method considers the integration of solar photovoltaic (PV) based DG units in power distribution networks. It is based on multi-objective function (MOF) that aims to maximize the net saving level (NSL), voltage deviation level (VDL), active power loss level (APLL), environmental pollution reduction level (EPRL), and short circuit level (SCL). The proposed algorithms using various strategies of inertia weight particle swarm optimization (PSO) are applied on the standard IEEE 69-bus system and a real 205-bus Algerian distribution system. The proposed approach and design of such a complicated multi-objective functions are ultimately to make considerable improvements in the technical, economic, and environmental aspects of power distribution networks. It was found that EIW-PSO is the best applied algorithm as it achieves the maximum targets on various quantities; it gives 75.8359%, 28.9642%, and 64.2829% for the APLL, EPRL, and VDL, respectively, with DG units’ installation in the IEEE 69-bus test system. For the same number of DG units, EIW-PSO gives remarkable improved performance with the Adrar City 205-bus test system; numerically, it shows 72.3080%, 22.2027%, and 63.6963% for the APLL, EPRL, and VDL, respectively. The simulation results of this study prove that the proposed algorithms exhibit higher capability and efficiency in fixing the optimum DG settings.
METADATA IN OTHER LANGUAGES:
Polish
Zwiększenie efektywności energetycznej dla optymalnej integracji wielu fotowoltaicznych generatorów rozproszonych przy użyciu strategii kontroli masy bezwładności w algorytmach PSO
generacja rozproszona oparta na OZE, maksymalizacja efektywności energetycznej, poziomy techniczno-ekonomiczno-środowiskowe, optymalizacja roju cząstek (PSO), strategie masy bezwładności, promieniowy system dystrybucji
Ostatnio zainteresowanie włączeniem generatorów rozproszonych do sieci dystrybucji energii elektrycznej znacznie wzrosło na całym świecie ze względu na postęp technologiczny, który doprowadził do obniżenia kosztów energii elektrycznej, zmniejszenia strat mocy, zwiększenia niezawodności systemu elektroenergetycznego i poprawy profilu napięcia. Korzyści te można zmaksymalizować, jeśli opracuje się i zaprojektuje optymalną alokację i wielkość generatorów rozproszonych w promieniowym systemie dystrybucji. Uzyskanie optymalnej lokalizacji i wielkości jednostek generatorów rozproszonych, które mają być zainstalowane w istniejącym promieniowym systemie dystrybucji, zależy od różnych ograniczeń, które czasami nakładają się lub są sprzeczne. Aby poradzić sobie z ograniczeniami i uzyskać optymalną lokalizację i rozmiar generatora rozproszonego, w ostatniej dekadzie często opracowywano metaheurystyczne algorytmy wyszukiwania i optymalizacji. W niniejszym artykule zaproponowano skuteczną technikę optymalizacji, aby przydzielić wiele jednostek generatorów rozproszonych do promieniowego systemu dystrybucji. Zaproponowana metoda optymalizacji uwzględnia integrację jednostek generatorów rozproszonych opartych na ogniwach fotowoltaicznych w sieciach dystrybucji energii. Opiera się na funkcji wielokryterialnej, która ma na celu maksymalizację poziomu oszczędności netto, poziomu odchylenia napięcia, poziomu utraty mocy czynnej, poziomu redukcji zanieczyszczenia środowiska i poziomu zwarcia. Zaproponowane algorytmy wykorzystujące różne strategie optymalizacji roju cząstek o masie bezwładności (PSO) są stosowane w standardowym systemie IEEE 69-autobus oraz w rzeczywistym algierskim systemie dystrybucji autobusu 205. Proponowane podejście i projekt tak skomplikowanych, wielozadaniowych funkcji ma ostatecznie doprowadzić do znacznej poprawy technicznych, ekonomicznych i środowiskowych aspektów sieci dystrybucyjnych. Stwierdzono, że algorytm EIW-PSO jest najlepszy do zastosowania w systemie testowym IEEE 69-bus, ponieważ osiąga maksymalne cele dla różnych wielkości: 75,8359%, 28,9642% i 64,2829% odpowiednio dla utraty mocy czynnej, poziomu redukcji zanieczyszczenia środowiska i poziomu odchylenia napięcia w procesie instalacji jednostek rozproszonych. Dla tej samej liczby generatorów rozproszonych, EIW-PSO zapewnia znacznie lepszą wydajność w testach autobusów 205 w mieście Adrar; liczbowo: 72,3080%, 22,2027% i 63,6963% odpowiednio dla utraty mocy czynnej, poziomu redukcji zanieczyszczenia środowiska i poziomu odchylenia napięcia. Wyniki symulacji tego badania dowodzą, że zaproponowane algorytmy wykazują większą zdolność i skuteczność w ustalaniu optymalnych ustawień generatorów rozproszonych.
 
REFERENCES (40)
1.
Ameli et al. 2014 – Ameli, A., Bahrami, S., Khazaeli, F. and Haghifam, M.R. 2014. A multiobjective particle swarm optimization for sizing and placement of DGs from DG owner’s and distribution company’s viewpoints. IEEE Transactions on Power Delivery 29(4), pp. 1831–1840, DOI: 10.1109/TPWRD.2014.2300845.
 
2.
Bayod-Rújula, A.A. 2009. Future development of the electricity systems with distributed generation. Energy 34(3), pp. 377–383, DOI: 10.1016/j.energy.2008.12.008.
 
3.
Belbachir et al. 2021 – Belbachir, N., Zellagui, M., Lasmari, A., El-Bayeh, C.Z. and Bekkouche, B. 2021. Optimal integration of photovoltaic distributed generation in electrical distribution network using hybrid modified PSO algorithms. Indonesian Journal of Electrical Engineering and Computer Science 24(1), pp. 50–60, DOI: 10.11591/ijeecs.v24.i1.pp50-60.
 
4.
Chatterjee, A. and Siarry, P. 2006. Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization. Computers & Operations Research 33(3), pp. 859–871, DOI: 10.1016/j.cor.2004.08.012.
 
5.
Chiradeja, P. and Ramakumar, R. 2004. An approach to quantify the technical benefits of distributed generation. IEEE Transactions on Energy Conversion 19(4), pp. 764–773, DOI: 10.1109/TEC.2004.827704.
 
6.
Dogan A. and Alci, M. 2019. Simultaneous optimization of network reconfiguration and DG installation using heuristic algorithms. Elektronika Ir Elektrotechnika 25(1), pp. 8–13, DOI: 10.5755/j01.eie.25.1.22729.
 
7.
Dominguez et al. 2019 – Melgar-Dominguez, O.D., Pourakbari-Kasmaei, M. and Mantovani, J.R.S. 2018. Adaptive robust short-term planning of electrical distribution systems considering siting and sizing of renewable energy-based DG units. IEEE Transactions on Sustainable Energy 10(1), pp. 158–169, DOI: 10.1109/TSTE.2018.2828778.
 
8.
Eberhart, R.C. and Shi, Y. 2001. Tracking and optimizing dynamic systems with particle swarms. [In:] 2001 Congress on Evolutionary Computation, Seoul, Korea 27–30 May 2001, DOI: 10.1109/CEC.2001.934376.
 
9.
El-Khattam, W. and Salma, M.M.A. 2004. Distribution generation technologies, definition and benefits. Electrical Power System Research 71(2), pp. 119–128, DOI: 10.1016/j.epsr.2004.01.006.
 
10.
Fan S.K.S. and Chiu, Y.Y. 2007. A decreasing inertia weight particle swarm optimizer. Engineering Optimization 39(2), pp. 203–228, DOI: 10.1080/03052150601047362.
 
11.
Feng et al. 2017 – Feng, Y., Teng, G.F., Wang, A.X. and Yao, Y.M. 2007. Chaotic inertia weight in particle swarm optimization. [In:] 2nd International Conference on Innovative Computing, Informatio and Control (ICICIC), Kumamoto, Japan, 5–7 September, DOI: 10.1109/ICICIC.2007.209.
 
12.
Ganguly et al. 2013 – Ganguly, S., Sahoo, N.C. and Das, D. 2013. Multi-objective particle swarm optimization based on fuzzy-Pareto-dominance for possibilistic planning of electrical distribution systems incorporating distributed generation. Fuzzy Sets and Systems 213, pp. 47–73, DOI: 10.1016/j.fss.2012.07.005.
 
13.
Hassan et al. 2017 – Hassan, A.A., Fahmy, F.H., Nafeh, A.E.S.A. and Abu-elmagd, M.A. 2017. Genetic single objective optimisation for sizing and allocation of renewable DG systems. International Journal of Sustainable Energy 36(6), pp. 545–562, DOI: 10.1080/14786451.2015.1053393.
 
14.
Hassan, H.A. and Zellagui, M. 2019. MVO algorithm for optimal simultaneous integration of DG and DSTATCOM in standard radial distribution systems based on technical-economic indices. [In:] 21st International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, 17–19 December, DOI: 10.1109/MEPCON47431.2019.9007995.
 
15.
HassanzadehFard, H. and Jalilian, A. 2018. Optimal sizing and location of renewable energy-based DG units in distribution systems considering load growth. International Journal of Electrical Power & Energy Systems 101, pp. 356–370, DOI: 10.1016/j.ijepes.2018.03.038.
 
16.
Hung et al. 2014 – Hung, D.Q., Mithulananthan, N. and Bansal, R.C. 2014. An optimal investment planning framework for multiple distributed generation units in industrial distribution systems. Applied Energy 124, pp. 62–72, DOI: 10.1016/j.apenergy.2014.03.005.
 
17.
Jamil Mahfoud et al. 2019 – Jamil Mahfoud, R., Sun, Y., Faisal Alkayem, N., Haes Alhelou, H., Siano, P. and Shafie-khah, M. 2019. A novel combined evolutionary algorithm for optimal planning of distributed generators in radial distribution systems. Applied Sciences 9(16), 3394, DOI: 10.3390/app9163394.
 
18.
Kennedy, J. and Eberhart, R. 1995. Particle swarm optimization. [In:] International Conference on Neural Networks (ICNN), Perth, Australia, 27 November–1 December, DOI: 10.1109/ICNN.1995.488968.
 
19.
Kentzoglanakis, K. and Poole, M. 2009. Particle swarm optimization with an oscillating inertia weight. [In:] 11th Annual Conference on Genetic and Evolutionary Computation (CGECO), Montreal, Canada, 8–12 July 2009, DOI: 10.1145/1569901.1570140.
 
20.
Lasmari et al. 2020a – Lasmari, A., Zellagui, M., Chenni, R., Semaoui, S., El-Bayeh, C.Z. and Hassan, H.A. 2020. Optimal energy management system for distribution systems using simultaneous integration of PV-based DG and DSTATCOM units. Energetika 66(1), pp. 1–14, DOI: 10.6001/energetika.v66i1.4294.
 
21.
Lasmari et al. 2020b – Lasmari, A., Zellagui, M., Gupta, A.R., El-Sehiemy, R.A. and Chenni, R. 2020. Multi-Objective Salp Swarm Algorithm for Performance Enhancement of Electrical Distribution System Including DG and DSTATCOM Simultaneously. [In:] 4th International Conference on Artificial Intelligence in Renewable Energetic Systems (IC-AIRES), Tipasa, Algeria, 22–24 November, 2020.
 
22.
Li et al. 2018 – Li, Y., Feng, B., Li, G., Qi, J., Zhao, D. and Mu, Y. 2018. Optimal distributed generation planning in active distribution networks considering integration of energy storage. Applied energy 210, pp. 1073–1081, DOI: 10.1016/j.apenergy.2017.08.008.
 
23.
Liao et al. 2011 – Liao, W., Wang, J. and Wang, J. 2011. Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization. [In:] International Conference in Swarm Intelligence (ICSC), Lecture Notes in Computer Science 6728, pp. 80–85, DOI: 10.1007/978-3-642-21515-5_10.
 
24.
Mahmoud Pesaran et al. 2017 – Mahmoud Pesaran, H.A., Huy, P.D. and Ramachandaramurthy, V.K. 2017. A review of the optimal allocation of distributed generation: Objectives, constraints, methods, and algorithms. Renewable and Sustainable Energy Reviews 75, pp. 293–312, DOI: 10.1016/j.rser.2016.10.071.
 
25.
Moradi, M.H. and Abedini, M. 2012. A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems. International Journal of Electrical Power & Energy Systems 34(1), pp. 66–74, DOI: 10.1016/j.ijepes.2011.08.023.
 
26.
Naik et al. 2015 – Naik, S.N.G., Khatod, D.K. and Sharma, M.P. 2015. Analytical approach for optimal siting and sizing of distributed generation in radial distribution networks. IET Generation, Transmission & Distribution 9(3), pp. 209–220, DOI: 10.1049/iet-gtd.2014.0603.
 
27.
Nickabadi et al. 2011 – Nickabadi, A., Ebadzadeh, M.M. and Safabakhsh, R. 2011. A novel particle swarm optimization algorithm with adaptive inertia weight. Applied Soft Computing 11(4), pp. 3658–3670, DOI: 10.1016/j.asoc.2011.01.037.
 
28.
Parizad et al. 2018 – Parizad, A., Baghaee, H.R., Yazdani, A. and Gharehpetian, G.B. 2018. Optimal distribution systems reconfiguration for short circuit level reduction using PSO algorithm. [In:] IEEE Power and Energy Conference at Illinois (PECI), Champaign, USA, 22–23 February, DOI: 10.1109/PECI.2018.8334976.
 
29.
Prabha et al. 2015 – Prabha, D.R., Jayabarathi, T., Umamageswari, R. and Saranya, S. 2015. Optimal location and sizing of distributed generation unit using intelligent water drop algorithm. Sustainable Energy Technologies and Assessments.11, pp. 106–113, DOI: 10.1016/j.seta.2015.07.003.
 
30.
Prabha, D.R. and Jayabarathi, T. 2016. Optimal placement and sizing of multiple distributed generating units in distribution networks by invasive weed optimization algorithm. Ain Shams Engineering Journal 7(2), pp. 683–694, DOI: 10.1016/j.asej.2015.05.014.
 
31.
Quadr et al. 2019 – Quadri, I.A., Bhowmick, S. and Joshi, D. 2019. A hybrid teaching–learning-based optimization technique for optimal DG sizing and placement in radial distribution systems. Soft Computing 23(20), pp. 9899–9917, DOI: 10.1007/s00500-018-3544-8.
 
32.
Raut, U. and Mishra, S. 2020. An improved sine–cosine algorithm for simultaneous network reconfiguration and DG allocation in power distribution systems. Applied Soft Computing 92, 106293, DOI: 10.1016/j.asoc.2020.106293.
 
33.
Saha, S. and Mukherjee, V. 2019. A novel multiobjective chaotic symbiotic organisms search algorithm to solve optimal DG allocation problem in radial distribution system. International Transactions on Electrical Energy Systems 29(5), e2839, DOI: 10.1002/2050-7038.2839.
 
34.
Selim et al. 2020 – Selim, A., Kamel, S. and Jurado, F. 2020. Efficient optimization technique for multiple DG allocation in distribution networks. Applied Soft Computing 86, 105938, DOI: 10.1016/j.asoc.2019.105938.
 
35.
Settoul et al. 2019a – Settoul, S., Chenni, R., Hasan, H.A., Zellagui, M. and Kraimia, M.N. 2019. MFO algorithm for optimal location and sizing of multiple photovoltaic distributed generations units for loss reduction in distribution systems. [In:] 7th International Renewable and Sustainable Energy Conference (IRSEC), Agadir, Morocco, 27–30 November, DOI: 10.1109/IRSEC48032.2019.9078241.
 
36.
Settoul et al. 2019b – Settoul, S., Zellagui, M., Abdelaziz, A.Y. and Chenni, R. 2019. Optimal integration of renewable distributed generation in practical distribution grids based on moth-flame optimization algorithm. [In:] 1st International Conference on Advanced Electrical Engineering (ICAEE), Algiers, Algeria, 19–21 November, DOI: 10.1109/ICAEE47123.2019.9014662.
 
37.
Sultana, S. and Roy, P.K. 2014. Multi-objective quasi-oppositional teaching learning-based optimization for optimal location of distributed generator in radial distribution systems. International Journal of Electrical Power & Energy Systems 63, pp. 534–545, DOI: 10.1016/j.ijepes.2014.06.031.
 
38.
Ting et al. 2012 – Ting, T.O., Shi, Y., Cheng, S. and Lee, S. 2012. Exponential inertia weight for particle swarm optimization. [In:] International Conference in Swarm Intelligence (ICSC). Lecture Notes in Computer Science, 7331, pp. 83–90, DOI: 10.1007/978-3-642-30976-2_10.
 
39.
Zhu, X. and Wang, H. 2018. A new inertia weight control strategy for particle swarm optimization. AIP Conference Proceedings 1955(1), 040095, DOI: 10.1063/1.5033759.
 
40.
Zellagui et al. 2021 – Zellagui, M., Lasmari, A., Settoul, S., El‐Sehiemy, R.A., El‐Bayeh, C.Z. and Chenni, R. 2021. Simultaneous allocation of photovoltaic and for and environmental benefits in electrical distribution systems at different loading conditions using novel hybrid optimization algorithms. International Transactions on Electrical Energy Systems 31(8), e12992, DOI: 10.1002/2050-7038.12992.
 
eISSN:2720-569X
ISSN:1429-6675
Journals System - logo
Scroll to top