ORIGINAL PAPER
Innovative methods of drying rapeseeds using microwave energy
 
More details
Hide details
1
Educational and Scientific Institute of Continuing Education and Tourism, National University of Life and Environmental Sciences of Ukraine, Ukraine
 
2
Department of Processes, Equipment and Energy Management, Оdesa National University of Technology, Ukraine
 
3
Engineering and Technology Faculty, Vinnytsia National Agrarian University, Ukraine
 
4
Faculty of Trade, Marketing and Service, Vinnytsia Trade and Economics Institute of the State Trade and Economics University, Ukraine
 
 
Submission date: 2023-02-26
 
 
Final revision date: 2023-04-15
 
 
Acceptance date: 2023-04-17
 
 
Publication date: 2023-06-19
 
 
Corresponding author
Ihor Kupchuk   

Engineering and Technology Faculty, Vinnytsia National Agrarian University, Ukraine
 
 
Polityka Energetyczna – Energy Policy Journal 2023;26(2):217-230
 
KEYWORDS
TOPICS
ABSTRACT
Rape is an important oil crop with a wide range of uses. Harvested rapeseed must be cleaned and dried before processing. The process of drying rapeseed as a small-seeded crop has its own specifics. One of the new drying methods is the use of microwave radiation, the disadvantage of which is uneven heating of the product. The purpose of this work was to study the modes of drying rapeseed by electromagnetic radiation in the ultra-high frequency range in combination with filtration. The indicators of the intensity of oilseed drying by infrared irradiation on the experimental stand were determined. The analysis of the conducted studies showed that the temperature of seeds at the maximum microwave power rises in general 1.5 to 1.8 times faster than at half the power. The higher the seed moisture content is, the higher the rate of temperature increase. After each blowing cycle, which lasted for five seconds, the temperature of the rapeseeds was set higher than the previous temperature, and after increasing the blowing time up to fifteen seconds, the temperature decreased by 8–12°C and cyclically stabilized. The applications of microwave drying represented in the paper are environmentally friendly, since the seeds do not come into direct contact with the products of gas combustion, which deteriorate its quality due to the possible penetration of carcinogenic components into the products. Experimental data was taken into account when developing the design of a small-sized grain dryer for farms, in which the drying process takes place without heating the air as a heat carrier.
METADATA IN OTHER LANGUAGES:
Polish
Innowacyjne metody suszenia nasion rzepaku energią mikrofalową
rzepak, energia mikrofalowa, suszenie filtracyjne, temperatura
Rzepak jest ważną rośliną oleistą o szerokim zakresie zastosowań. Zebrany musi zostać oczyszczony i wysuszony przed przetworzeniem. Proces suszenia rzepaku, jako rośliny o małych nasionach, ma swoją specyfikę. Jedną z nowych metod suszenia jest wykorzystanie promieniowania mikrofalowego, którego wadą jest nierównomierne ogrzewanie produktu. Celem postawionym w niniejszej pracy było zbadanie sposobów suszenia nasion rzepaku za pomocą promieniowania elektromagnetycznego w zakresie ultrawysokich częstotliwości w połączeniu z filtracją. Określono wskaźniki intensywności suszenia nasion oleistych za pomocą promieniowania podczerwonego na stanowisku doświadczalnym. Analiza przeprowadzonych doświadczeń wykazała, że temperatura nasion przy maksymalnej mocy mikrofalowej wzrasta ogólnie od 1,5 do 1,8 razy szybciej niż przy połowie mocy. Im wyższa wilgotność nasion, tym większe tempo wzrostu temperatury. Po każdym cyklu nadmuchu, który trwał pięć sekund, temperatura nasion rzepaku była wyższa niż poprzednia, a po zwiększeniu czasu przedmuchiwania do piętnastu sekund, temperatura spadała o 8–12°C i cyklicznie stabilizowała się. Przedstawione w artykule zastosowania suszenia mikrofalowego są przyjazne dla środowiska, ponieważ nasiona nie wchodzą w bezpośredni kontakt z produktami spalania gazu, które pogarszają ich jakość ze względu na możliwe przenikanie składników rakotwórczych do produktów. Dane eksperymentalne zostały wzięte pod uwagę przy opracowywaniu projektu małej suszarki do ziarna dla gospodarstw rolnych, w której proces suszenia odbywa się bez podgrzewania powietrza jako nośnika ciepła.
REFERENCES (26)
1.
An et al. 2022 – An, N-n., Li, D., Wang, L.-j. and Wang, Y. 2022. Factors affecting energy efficiency of microwave drying of foods: an updated understanding. Critical Reviews in Food Science and Nutrition, DOI: 10.1080/10408398.2022.2124947.
 
2.
Apolinar, P. and Joaquin, M. 2012. Mathematical modeling of a continuous vibrating fluidized bed dryer for grain. Drying Technology 30(13), pp. 1469–1481, DOI: 10.1080/07373937.2012.690123.
 
3.
Bae et al. 2017 – Bae, S.-H., Jeong, M.-G., Kim, J.-H. and Lee, W.-S. 2017. A continuous power-controlled microwave belt drier improving heating uniformity. IEEE Microwave and Wireless Components Letters 27(5), pp. 527–529, DOI: 10.1109/LMWC.2017.2690849.
 
4.
Bandura et al. 2018 – Bandura, V., Kalinichenko, R., Kotov, B. and Spirin, A. 2018. Theoretical rationale and identification of heat and mass transfer processes in vibration dryers with IR-power supply. Eastern European Journal of Enterprise Technologies 4/8(94), pp. 50–58, DOI: 10.15587/1729-4061.2018.139314.
 
5.
Bandura et al. 2019 – Bandura, V., Mazur, V., Yaroshenko, L. and Rubanenko, O. 2019. Research on sunflower seeds drying process in a monolayer tray vibration dryer based on infrared radiation. INMATEH – Agricultural Engineering 57(1), pp. 233–242.
 
6.
Bezbah et al. 2022 – Bezbah, I., Zykov, A., Mordynskyi, V., Osadchuk, P., Phylipova, L., Bandura, V., Yarovyi, I. and Marenchenko, E. 2022. Designing the structure and determining the mode characteristics of the grain dryer based on thermosiphons. Eastern-European Journal of Enterprise Technologies 2(8(116)), pp. 54–61, DOI: 10.15587/1729-4061.2022.253977.
 
7.
Bulgakov et al. 2018 – Bulgakov, V., Bandura, V., Arak, M. and Olt, J. 2018. Intensification of rapeseed drying process through the use of infrared emitters. Agronomy Research 16(2), pp. 349–356, DOI: 10.15159/AR.18.054.
 
8.
Burdo et al. 2017 – Burdo, O., Bandura, V., Zykov, A., Zozulyak, I., Levtrinskaya, J. and Marenchenko, E. 2017. Development of wave technologies to intensify heat and mass transfer processes. Eastern-European Journal of Enterprise Technologies 4/11(88), pp. 34–42, DOI: 10.15587/1729-4061.2017.108843.
 
9.
Burdo et al. 2019 – Burdo, O., Bezbah, І., Kepin, N., Zykov, A., Yarovyi, I., Gavrilov, A., Bandura, V. and Mazurenko, I. 2019. Studying the operation of innovative equipment for thermomechanical treatment and dehydration of food raw materials. Eastern-European Journal of Enterprise Technologies 5(11(101), pp. 24–32, DOI: 10.15587/1729-4061.2019.178937.
 
10.
De Oliveira, A.M.R.C.B. and Yu, P. 2022. Research progress and future study on physicochemical, nutritional, and structural characteristics of canola and rapeseed feedstocks and co-products from bio-oil processing and nutrient modeling evaluation methods. Critical Reviews in Food Science and Nutrition, DOI: 10.1080/10408398.2022.2033686.
 
11.
Guzik et al. 2022 – Guzik, P., Kulawik, P., Zając, M. and Migdał, W. 2022. Microwave applications in the food industry: an overview of recent developments. Critical Reviews in Food Science and Nutrition 62(29), pp. 7989–8008, DOI: 10.1080/10408398.2021.1922871.
 
12.
Hemis et al. 2015 – Hemis, M., Choudhary, R., Gariépy, Y. and Raghavanc, V.G.S. 2015. Experiments and modelling of the microwave assisted convective drying of canola seeds. Biosystems Engineering 139, pp. 121–127, DOI: 10.1016/j.biosystemseng.2015.08.010.
 
13.
Kaiser et al. 2022 – Kaiser, F., Harbach, H. and Schulz, C. 2022. Rapeseed proteins as fishmeal alternatives: A review. Reviews in Aquaculture 14 (4), pp. 1887–1911, DOI: 10.1111/raq.12678.
 
14.
Kotov et al. 2019 – Kotov, B., Spirin, A., Kalinichenko, R., Bandura, V., Polievoda, Y. and Tverdokhlib, I. 2019. Determination the parameters and modes of new heliocollectors constructions work for drying grain and vegetable raw material by active ventilation. Research in Agricultural Engineering 65(1), pp. 20–24, DOI: 10.17221/73/2017-RAE.
 
15.
Kuznietsova et al. 2020 – Kuznietsova, I., Bandura, V., Paziuk, V., Tokarchuk, O. and Kupchuk, I. 2020. Application of the differential scanning calorimetry method in the study of the tomato fruits drying process. Agraarteadus 31(2), pp. 173–180, DOI: 10.15159/jas.20.14.
 
16.
Lannuzel et al. 2022 – Lannuzel, C., Smith, A., Mary, A., Della Pia, E.; Kabel, M. and de Vries, S. 2022. Improving fiber utilization from rapeseed and sunflower seed meals to substitute soybean meal in pig and chicken diets: A review. Animal Feed Science and Technology 285, DOI: 10.1016/j.anifeedsci.2022.115213.
 
17.
Li et al. 2011 – Li, Z.Y., Wang, R.F. and Kudra, T. 2011. Uniformity issue in microwave drying. Drying Technology 29, pp. 652–660, DOI: 10.1080/07373937.2010.521963.
 
18.
Li et al. 2014 – Li, Y., Zhang, T., Wu, C. and Zhang, C. 2014. Intermittent microwave drying of wheat (Triticum aestivum L.) seeds. Journal of Experimental Biology and Agricultural Sciences 2(1), pp. 32–36.
 
19.
Oliveira, M.E.C. and Franca, A.S. 2002. Microwave heating of foodstuffs. Journal of Food Engineering 53(4), pp. 347–359, DOI: 10.1016/S0260-8774(01)00176-5.
 
20.
Paziuk et al. 2018 – Paziuk, V.M., Liubin, M.V., Yaropud, V.M., Tokarchuk, O.A. and Tokarchuk, D.M. 2018. Research on the rational regimes of wheat seeds drying. INMATEH – Agricultural Engineering 12, pp. 39–48, DOI: 10.35633/INMATEH-58-33.
 
21.
Paziuk et al. 2021 – Paziuk, V., Vyshnevskiy, V., Tokarchuk, O., Kupchuk, I. 2021. Substantiation of the energy efficient schedules of drying grain seeds. Bulletin of the Transilvania University of Braşov. Series II: Forestry, Wood Industry, Agricultural Food Engineering 14(63), pp. 137–146, DOI: 10.31926/but.fwiafe.2021.14.63.2.13.
 
22.
Paziuk et al. 2022 – Paziuk, V., Snezhkin, Y., Dmytrenko, N., Ivanov, S., Tokarchuk, O. and Kupchuk, I. 2022. Thermal and physical properties and heat-mass transfer processes of drying pumpkin seeds. Przegląd Elektrotechniczny 98(7), pp. 154–157, DOI: 10.15199/48.2022.07.25.
 
23.
Qingxi et al. 2015 – Qingxi, L., Caixia, S. and Boping, T. 2015. Effect of microwave drying on rapeseed’s dehydrating characteristics and quality properties. Quality, nutrition and processing: processing technology, pp. 189–191.
 
24.
Spirin et al. 2022. – Spirin, A., Kupchuk, I., Tverdokhlib, I., Polievoda, Yu., Kovalova, K. and Dmytrenko, V. 2022. Substantiation of modes of drying alfalfa pulp by active ventilation in a laboratory electric dryer. Przegląd Elektrotechniczny 98(5), pp. 11–15, DOI: 10.15199/48.2022.05.02.
 
25.
Yang et al. 2019 – Yang, R., Xue, L., Zhang, L., Wang, X., Qi, X., Jiang, J., Yu, L., Wang, X., Zhang, W. and Zhang, Q. 2019. Phytosterol contents of edible oils and their contributions to estimated phytosterol intake in the Chinese diet. Foods 8, , DOI: 10.3390/foods8080334.
 
26.
Zhao et al. 2017 – Zhao, Y., Jiang, Y., Zheng, B., Zhuang, W., Zheng, Y. and Tian, Y. 2017. Influence of microwave vacuum drying on glass transition temperature, gelatinization temperature, physical and chemical qualities of lotus seeds. Food chemistry 228, pp. 167–176, DOI: 10.1016/j.foodchem.2017.01.141.
 
eISSN:2720-569X
ISSN:1429-6675
Journals System - logo
Scroll to top