ORIGINAL PAPER
Land suitability analysis for solar farms exploitation using the GIS and Analytic Hierarchy Process (AHP) – a case study of Morocco
 
More details
Hide details
1
Geology Department, Laboratory of Applied Geology, Geomatics and Environment, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Morocco
 
 
Submission date: 2021-02-11
 
 
Final revision date: 2021-02-18
 
 
Acceptance date: 2021-02-19
 
 
Publication date: 2021-06-21
 
 
Corresponding author
Meryem Taoufik   

Geology Department, Laboratory of Applied Geology, Geomatics and Environment, Faculty of Sciences Ben M’Sik, Hassan II University of Casablanca, Av Driss El Harti Sidi Othmane, 20670, Casablanca, Morocco
 
 
Polityka Energetyczna – Energy Policy Journal 2021;24(2):79-96
 
KEYWORDS
TOPICS
ABSTRACT
Provided Morocco’s geographical position and climatic conditions, solar energy will supply a large portion of the country's energy demand. In this paper, the suitability of Moroccan lands for hosting Solar Power Plants was studied using the combination of the Geographic Information System (GIS) and the Analytical Hierarchy Method (AHP). The multi-criteria decision framework integrates technical, socio-economic and environmental constraints. For this purpose, a GIS database was created using layers from various sources. In addition, since the potential of Global Horizontal Irradiation (GHI) is the most relevant criterion for the selection of solar farms, a high-quality solar satellite map with a spatial resolution of 0.27 km was used, covering a period from 1994 to 2018. Obtained results show a great potential for solar energy development in Morocco, represented by the availability of 90% of areas. In fact, the resulting map was classified into 6 different classes, namely: Very high suitability, High suitability, Moderate suitability, Low suitability, Very low suitability and Exclusion areas, which 53.88%, 24.08%, 0.15%, 0%, 0% and 21.89% are respectively the percentages of their area occupation. According to the performed investigations, the most significant criteria that should be considered include: The Global Horizontal Irradiation, Slope, Temperature and Slope orientation. The obtained map was then compared to the existing solar farms, and show that all the existing projects are located within areas classified as highly suitable.
METADATA IN OTHER LANGUAGES:
Polish
Analiza przydatności gruntów do eksploatacji farm słonecznych z wykorzystaniem Systemu Informacji Geograficznej (GIS) i Analitycznego Procesu Hierarchicznego (AHP) – studium przypadku Maroka
Systemy Informacji Geograficznej, analiza wielokryterialna, energia słoneczna, wybór lokalizacji, Afryka
Biorąc pod uwagę położenie geograficzne i warunki klimatyczne Maroka, energia słoneczna pokryje dużą część zapotrzebowania na energię w tym kraju. W artykule zbadano przydatność terenów marokańskich do lokalizacji elektrowni słonecznych za pomocą połączenia Systemu Informacji Geograficznej (GIS) i metody Analitycznego Procesu Hierarchicznego (AHP). Wielokryterialne ramy decyzyjne uwzględniają ograniczenia techniczne, społeczno-ekonomiczne i środowiskowe. W tym celu utworzono bazę danych GIS przy użyciu danych z różnych źródeł. Ponadto, ponieważ potencjał globalnego nasłonecznienia poziomego (GHI) jest najważniejszym kryterium wyboru farm słonecznych, zastosowano wysokiej jakości słoneczną mapę satelitarną o rozdzielczości przestrzennej 0,27 km, obejmującą okres od 1994 do 2018 roku. Uzyskane wyniki wskazują na duży potencjał rozwoju energii słonecznej w Maroku na 90% obszaru kraju. W rzeczywistości otrzymana mapa została podzielona na 6 różnych klas, a mianowicie: bardzo wysoka przydatność, wysoka przydatność, umiarkowana przydatność, niska przydatność, bardzo niska przydatność i obszary wykluczenia, które stanowią odpowiednio: 53,88; 24,08; 0,15; 0; 0; i 21,89 procent zajmowanej powierzchni. Zgodnie z przeprowadzonymi badaniami, do najważniejszych kryteriów, które należy wziąć pod uwagę, należą: globalne nasłonecznienie poziome, nachylenie, temperatura i orientacja nachylenia. Uzyskana mapa została następnie porównana z istniejącymi farmami fotowoltaicznymi i wykazała, że wszystkie istniejące projekty znajdują się na obszarach o wysokiej przydatności.
REFERENCES (43)
1.
Al Garni, H.Z. and Awasthi, A. 2017. Solar PV power plant site selection using a GIS-AHP based approach with application in Saudi Arabia. Applied Energy 206, pp. 1225–1240, DOI: 10.1016/j.apenergy.2017.10.024.
 
2.
Algarín et al. 2017 – Algarín, C.R., Llanos, A.P. and Castro, A.O. 2017. An Analytic Hierarchy Process Based Approach for Evaluating Renewable Energy Sources. International Journal of Energy Economics and Policy 7(4) , pp. 38–47.
 
3.
Ali et al. 2018 – Ali, S., Taweekun, J., Techato, K., Waewsak, J. and Gyawali, S. 2018. GIS based site suitability assessment for wind and solar farms in Songkhla, Thailand. Renewable Energy, DOI: 10.1016/j.renene.2018.09.035.
 
4.
Alqaderi et al. 2018 – Alqaderi, M.B., Emar, W. and Saraereh, O.A. 2018. Concentrated Solar Power Site Suitability using GIS-MCDM Technique taken UAE as a Case Study. International Journal of Advanced Computer Science and Applications 9(4).
 
5.
Amegroud, T. 2015. Morocco’s Power Sector Transition: Achievements and Potential, IAI-OCP Policy Center.
 
6.
Beccali et al. 2003 – Beccali, M., Cellura, M. and Mistretta, M. 2003. Decision-making in energy planning. Application of the ELECTRE method at regional level for the diffusion of renewable energy technology. Renewable Energy 28(13), pp. 2063–2087, DOI: 10.1016/S0960-1481(03)00102-2.
 
7.
Budak et al. 2019 – Budak, G., Chen, X., Celik, S. and Ozturk, B. 2019. A systematic approach for assessment of renewable energy using analytic hierarchy process. Energy, Sustainability and Society 9(37), DOI: 10.1186/s13705-019-0219-y.
 
8.
Carrión et al. 2008 – Carrión, J.A., Estrella, A.E., Dols, F.A., Toro, M.Z., Rodríguez, N. and Ridao, A.R. 2008. Environmental decisionsupport systems for evaluating the carrying capacity of land areas: Optimal site selection for grid-connected photovoltaic power plants. Renewable and Sustainable Energy Reviews 12(9), pp. 2358–2380, DOI: 10.1016/j.rser.2007.06.011.
 
9.
Chentouf, M. and Allouch, M. 2017. Assessment of energy security in MedRing countries and regional trends towards renewable energy deployment. Journal of Renewable and Sustainable Energy 9, DOI: 10.1063/1.5001825.
 
10.
Czaplicka-Kolarz et al. 2014 – Czaplicka-Kolarz, K., Fugiel, A. and Burchart-Korol, D. 2014. Integrated assessment of environmental, cost, and technical performance for energy production based on coal gasification technology using multi-criteria methods (Zintegrowana ocena efektywności środowiskowej, kosztowej i technicznej produkcji energii opartej na technologii zgazowania węgla z zastosowaniem metod wielokryterialnych). Polityka Energetyczna – Energy Policy Journal 17(4), pp. 263–275 (in Polish).
 
11.
Daim et al. 2013 – Daim, T., Oliver, T. and Kim, J. 2013. Research and Technology Management in the Electricity Industry: Methods, Tools and Case Studies.
 
12.
De Felice et al. 2016 – De Felice, F., Petrillo, A. and Saaty, T. 2016. Applications and Theory of Analytic Hierarchy Process: Decision Making for Strategic Decisions, IntechOpen.
 
13.
El Mghouchi et al. 2016 – El Mghouchi, Y., Ajzoul, T. and El Bouardi, A. 2016. Prediction of daily solar radiation intensity by day of the year in twenty-four cities of Morocco. Renewable and Sustainable Energy Reviews 53, DOI: 10.1016/j.rser.2015.09.059.
 
14.
Emec et al. 2019 – Emec, S., Turanoglu, B. Oztas, S. and Akkaya, G. 2019. An Integrated MCDM for a Medical Company Selection in Health Sector. International Journal of Scientific and Technological Research 5(4), DOI: 10.7176/JSTR/5-4-09.
 
15.
Eraud et al. 2013 – Eraud, C., Rivière, M., Lormée, H., Fox, J.W., Ducamp, J.-J. and Boutin, J.-M. 2013. Migration routes and staging areas of trans-Saharan Turtle Doves Appraised from Light-Level Geolocators. PLoS ONE 8(3), DOI: 10.1371/journal.pone.0059396.
 
16.
Galińska, B. 2019. MCDM as the Tool of Intelligent Decision Making in Transport. Case Study Analysis. Smart and Green Solutions for Transport System, pp. 67–79, DOI: 10.1007/978-3-030-35543-2_6.
 
17.
Gašparović, I. and Gašparović, M. 2019. Determining Optimal Solar Power Plant Locations Based on Remote Sensing and GIS Methods: A Case Study from Croatia. Remote Sensing 11(12), DOI: 10.3390/rs11121481.
 
18.
Janke, J.R. 2010. Multicriteria GIS modeling of wind and solar farms in Colorado. Renewable Energy 35(10), pp. 2228–2234, DOI: 10.1016/j.renene.2010.03.014.
 
19.
Karmakera, C.L. and Sahab, M. 2015. Teachers’ recruitment process via MCDM methods: A case study in Bangladesh. Management Science Letters 5, pp. 749–766, DOI: 10.5267/j.msl.2015.6.002.
 
20.
Khatib, N. 2018. Country profile Morocco 2018 RES4MED.
 
21.
Komoto et al. 2014 – Komoto, K., Breyer, C., Cunow, E., Megherbi, K., Faiman, D. and Vleuten, P.V.D. 2014. Energy from the Desert: Very Large Scale PV Power-State of the Art and Into The Future.
 
22.
Kumar et al. 2017 – Kumar, A., Sah, B., Singh, A.R., Deng, Y., He, X., Kumar, P. and Bansal, R.C. 2017. A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renewable and Sustainable Energy Reviews 69, pp. 596–609, DOI: 10.1016/j.rser.2016.11.191.
 
23.
Maher, J. 2002. The Middle East and North Africa 2003. Oxfordshire: Routledge, 1374 pp.
 
24.
Ministry Delegate of the Minister of Energy, Water and Environment 2016. Morocco’s Nationally Determined Contribution under the UNFCCC. M. Ministry Delegate of the Minister of Energy, Water and Environment, Kingdom of Morocco.
 
25.
Rodrigues et al. 2017 – Rodrigues, S., Coelho, M.B. and Cabral, P. 2017. Suitability Analysis of Solar Photovoltaic farms: A Portuguese Case Study. International Journal of Renewable Energy Research 7(1), pp. 244–254.
 
26.
Ruiz et al. 2020 – Ruiz, H.S., Sunarso, A., Ibrahim-Bathis, K., Murti, S.A. and Budiarto, I. 2020.
 
27.
GIS-AHP Multi-Decision-Criteria-Analysis for the Optimal Location of SolarEnergy Plants at Indonesia. Energy Reports 6, pp. 3249–3263, DOI: 10.1016/j.egyr.2020.11.198.
 
28.
Rumbayan, M. and Nagasaka, K. 2012. Prioritization decision for renewable energy development using analytic hierarchy process and geographic information system. The 2012 International Conference on Advanced Mechatronic Systems. Tokyo.
 
29.
Saaty, T.L. 1980. The analytic hierarchy process. New York, McGraw-Hill.
 
30.
Saaty, T.L. 1990. How to make a decision: the analytic hierarchy process. European Journal of Operational Research 48(1), pp. 9–26, DOI: 10.1016/0377-2217(90)90057-I.
 
31.
Samanlioglu, F. and Ayağ, Z. 2017. A fuzzy AHP-PROMETHEE II approach for evaluation of solar power plant location alternatives in Turkey. Journal of Intelligent and Fuzzy Systems 33(2), pp. 859–871, DOI: 10.3233/JIFS-162122.
 
32.
Spyridonidou et al. 2021 – Spyridonidou, S., Sismani, G., Loukogeorgaki, E., Vagiona, D.G., Ulanovsky, H. and Madar, D. 2021. Sustainable Spatial Energy Planning of Large-Scale Wind and PV Farms in Israel: A Collaborative and Participatory Planning Approach. Energies 14(3), DOI: 10.3390/en14030551.
 
33.
Stienen et al. 2016 – Stienen, E.W., Desmet, P., Aelterman, B., Courtens, W., Feys, S., Vanermen, N., Verstraete, H., Van de walle, M., Deneudt, K., Hernandez, F., Houthoofdt, R., Vanhoorne, B., Bouten, W., Buijs, R., Kavelaars, M.M., Müller, W., Herman, D., Matheve, H., Sotillo, A. and Lens, L. 2016. Bird tracking – GPS tracking of Lesser Black-backed Gulls and Herring Gulls breeding at the southern North Sea coast. ZooKeys 555, pp. 115–124, DOI: 10.3897.zookeys.555.6173.
 
34.
Stojanovic, M. 2013. Multi-Criteria decision-making for selection of Renewable Energy Systems. Safety Engineering 115, DOI: 10.7562/SE2013.3.02.02.
 
35.
Taha, R.A. and Daim, T. 2013. Multi-Criteria Applications in Renewable Energy Analysis, a Literature Review. Research and Technology Management in the Electricity Industry, DOI: 10.1007/978-1-4471-5097-8_2.
 
36.
Taoufik et al. 2016 – Taoufik, M., Baghdad, B., El Hadi, H. and Laghlimi, M. 2016. GIS and Remote Sensing applications for abandoned quarries rehabilitation: A case study in the Akreuch Region, Rabat, Morocco. International Journal of Advanced Research 4(7), pp. 1284–1303, DOI: 10.21474/IJAR01/937.
 
37.
Tsoutsos et al. 2005 – Tsoutsos, T., Frantzeskaki, N. and Gekas, V. 2005. Environmental impacts from solar energy technologies. Energy Policy 33, pp. 289–296, DOI: 10.1016/S0301-4215(03)00241-6.
 
38.
Turney, D. and Fthenakis, V. 2011. Environmental impacts from the installation and operation of large-scale solar power plants. Renewable and Sustainable Energy Reviews 15(6), pp. 3261–3270, DOI: 10.1016/j.rser.2011.04.023.
 
39.
Uyan, M. 2013. GIS-based solar farms site selection using analytic hierarchy process (AHP) in Karapinar region, Konya/Turkey. Renewable and Sustainable Energy Reviews 28, pp. 11–17, DOI: 10.1016/j.rser.2013.07.042.
 
40.
Verner et al. 2018 – Verner, D., Treguer, D.O., Redwood, J., Christensen, J.H., Mcdonnell, R. Elbert, C., Konishi, Y. and Belghazi, S. 2018. Climate variability, drought, and drought management in Morocco’s agricultural sector, World Bank Group.
 
41.
Wang et al. 2009 – Wang, J.-J., Jing, Y.-Y., Zhang, C.-F. and Zhao, J.-H. 2009. Review on multi-criteria decision analysis aid in sustainable energydecision-making. Renewable and Sustainable Energy Reviews 13, pp. 2263–2278, DOI: 10.1016/j.rser.2009.06.021.
 
42.
Zavadskas, E.K. and Turskis, Z. 2011. Multiple Criteria Decision Making (MCDM) Methods in Economics: An Overview. Technological and Economic Development of Economy 17(2), pp. 397–427, DOI: 10.3846/20294913.2011.593291.
 
43.
Zohrul Kabir, A.B.M. and Shihan, S.M.A. 2003. Selection of renewable energy sources using Analytic Hierarchy Process. Indonesia 267.
 
eISSN:2720-569X
ISSN:1429-6675
Journals System - logo
Scroll to top