ORIGINAL PAPER
Mathematical model of the intensification of convective heat transfer in a bundle of smooth pipes using petal turbulators
 
More details
Hide details
1
Caspian University of Technology and Engineering named after Sh. Yessenov, Kazakhstan
 
 
Submission date: 2022-10-26
 
 
Final revision date: 2022-11-29
 
 
Acceptance date: 2022-12-06
 
 
Publication date: 2023-03-24
 
 
Corresponding author
Jiyenbeck Sugirov   

Caspian University of Technology and Engineering named after Sh. Yessenov, Kazakhstan
 
 
Polityka Energetyczna – Energy Policy Journal 2023;26(1):93-110
 
KEYWORDS
TOPICS
ABSTRACT
The relevance of this study is explained by the growing interest in increasing heat transfer by the development of high-performance thermal systems. Increasing the thermal characteristics of heat-exchanger systems is necessary for the efficient use of an energy source. The purpose of this study is to review the existing methods of heat-transfer intensification and examine the mathematical model of such an increase in efficiency when using petal turbulators. This study is based on a high-quality, reliable combination of proven theoretical methods (analysis, synthesis, concretization, generalization, modelling), and empirical methods. It is the introduction of turbulators into the flow channel that is one of the best methods of increasing passive heat exchange through such advantages as ease of manufacture and operation in combination with low operating and production costs. This study contains both passive and active methods of heat-exchange intensification that have been extensively investigated over the past decade. For this purpose, the newest studies of mainly authors from other countries were used, their detailed analysis was conducted and the results were summed up. In addition, a mathematical model of increasing the thermal efficiency of convective heating surfaces in a bundle of smooth pipes using petal turbulators was investigated, the results of which were tested on an experimental installation. The paper may interest a circle of readers interested in the problem of improving the thermal characteristics of heat exchangers, including researchers, teachers and students of higher educational institutions in the field of heat-power engineering.
METADATA IN OTHER LANGUAGES:
Polish
Model matematyczny intensyfikacji konwekcyjnej wymiany ciepła w wiązce rur gładkich z wykorzystaniem turbulatorów płatkowych
turbulencja, kotły cieplne, zwiększona wymiana ciepła, tarcie przepływu, przepływ wirowy
Znaczenie tego badania wynika z rosnącego zainteresowania zwiększeniem wymiany ciepła poprzez rozwój wysokowydajnych systemów termicznych. Zwiększenie charakterystyki cieplnej układów wymienników ciepła jest niezbędne do efektywnego wykorzystania źródła energii. Celem niniejszej pracy jest przegląd istniejących metod intensyfikacji wymiany ciepła oraz zbadanie modelu matematycznego takiego wzrostu wydajności przy zastosowaniu turbulatorów płatkowych. Niniejsze opracowanie opiera się na wysokiej jakości, rzetelnym połączeniu sprawdzonych metod teoretycznych (analiza, synteza, konkretyzacja, uogólnienie, modelowanie) oraz metod empirycznych. Ponieważ to właśnie wprowadzenie zawirowywaczy do kanału przepływowego jest jedną z najlepszych metod zwiększenia biernej wymiany ciepła poprzez takie zalety jak łatwość wykonania i eksploatacji w połączeniu z niskimi kosztami eksploatacji i produkcji. Niniejsze opracowanie obejmuje zarówno pasywne, jak i aktywne metody intensyfikacji wymiany ciepła, które były szeroko badane w ciągu ostatniej dekady. W tym celu wykorzystano najnowsze badania, głównie autorów z innych krajów, dokonano ich szczegółowej analizy i podsumowano wyniki. Ponadto zbadano model matematyczny zwiększania sprawności cieplnej konwekcyjnych powierzchni grzewczych w wiązce rur gładkich za pomocą turbulatorów płatkowych, którego wyniki przetestowano na instalacji doświadczalnej. Artykuł może zainteresować grono czytelników zainteresowanych problematyką poprawy właściwości cieplnych wymienników ciepła, w tym naukowców, nauczycieli i studentów wyższych uczelni z zakresu elektroenergetyki.
 
REFERENCES (30)
1.
Asaulyuk et al. 2017 – Asaulyuk, T., Semeshko, O., Saribyekova, Y., Kunik, A. and Myasnykov, S. 2017. Examining a change in the properties of coarse wool fiber under the influence of electrical discharge treatment. Eastern-European Journal of Enterprise Technologies 4(1(88)), pp. 50–55, DOI: 10.15587/1729-4061.2017.108269.
 
2.
Batrakov, D.O. and Zhuk, N.P. 1994. Method for testing of layer-non-homogeneous dielectrics using numerical solution of reverse problem dialing with dissipation in polarization parameters domain. Defektoskopiya 2, pp. 82–87.
 
3.
Durmus et al. 2004 – Durmus, A., Kurbas, I., Gulcimen, F. and Turgut, E. 2004. Investigation of the effect of co-axis free rotating propeller-type turbulators on the performance of heat exchanger. International Communications in Heat and Mass Transfer 31(1), pp. 133–142, DOI: 10.1016/S0735-1933(03)00208-2.
 
4.
Durmus, A. 2004. Heat transfer and exergy loss in cut out conical turbulators. Energy Conversion and Management 45(5), pp. 785–796, DOI: 10.1016/S0196-8904(03)00186-9.
 
5.
Eiamsa-ard, S. and Promvonge, P. 2007. Enhancement of heat transfer in a circular wavy-surfaced tube with a helical-tape insert. International Energy Journal 8, pp. 29–36.
 
6.
Erbay et al. 2021 – Erbay, B., Celik, L. and Hamdi, S. 2021. Improving heat transfer with various types of turbulators on heat exchangers. Journal of Thermal Engineering 7(7), pp. 1654–1670.
 
7.
Eygens, L.S. 1940. Proceedings of the energy institute named after G.M. Krzhizhanovsky. Moscow: Publishing House of the Academy of Sciences of the USSR.
 
8.
Gukhman, A. 2010. On the foundations of URSS thermodynamics. Moscow: Editorial URSS.
 
9.
Kongkaitpaiboon et al. 2010 – Kongkaitpaiboon, V., Nanan, K. and Eiamsa-ard, S. 2010. Experimental investigation of convective heat transfer and pressure loss in a round tube fitted with circular-ring turbulators. International Communications in Heat and Mass Transfer 37(5), pp. 568–574, DOI: 10.1016/j.icheatmasstransfer.2009.12.016.
 
10.
Kostin et al. 2005 – Kostin, N., Sheikina, O. and Artemchuk, V. 2005. Mathematical modeling of non-linear electrochemical circuits with pulse sources of voltage. Przeglad Elektrotechniczny 81(2), pp. 57–60.
 
11.
Kunik et al. 2016 – Kunik, O., Semeshko, O., Asaulyuk, T., Saribyekova, Y. and Myasnykov, S. 2016. Development of a two-step technology of scouring wool by the method of highenergy discrete treatment. Eastern-European Journal of Enterprise Technologies 4(10(82)), pp. 36–43, DOI: 10.15587/1729-4061.2016.76380.
 
12.
Li et al. 2020 – Li, X., Xie, G., Liu, J. and Sunden, B. 2020. Parametric study on flow characteristics and heat transfer in rectangular channels with strip slits in ribs on one wall. International Journal of Heat and Mass Transfer 149, DOI: 10.1016/j.ijheatmasstransfer.2019.07.046.
 
13.
Naga Sarada et al. 2010 – Naga Sarada, S., Sita Rama Raju, A., Kalyani Radha, K. and Shyam Sunder, L. 2010. Enhancement of heat transfer using varying width twisted tape inserts. International Journal of Engineering, Science and Technology 2(6), pp. 107–118, DOI: 10.4314/ijest.v2i6.63702.
 
14.
Polukarov et al. 2021 – Polukarov, O.i., Prakhovnik, N.a., Polukarov, Y.o., Mitiuk, L.O. and Demchuk, H.V. 2021. Assessment of occupational risks: New approaches, improvement, and methodology. International Journal of Advanced and Applied Sciences 8(11), pp. 79–86.
 
15.
Prandtl, L. 2000. Hydroaeromechanics. Izhevsk: Publishing House “Regular and Chaotic Dynamics”.
 
16.
Promvonge, P. 2008. Thermal augmentation in circular tube with twisted tape and wire coil turbulators. Energy Conversion and Management 49, pp. 2949–2955.
 
17.
Promvonge, P. and Skullong, S. 2019. Heat transfer in solar receiver heat exchanger with combined punched V-ribs and chamfer-V-grooves. International Journal of Heat and Mass Transfer 143, DOI: 10.1016/j.ijheatmasstransfer.2019.118486.
 
18.
Promvonge, P. and Skullong, S. 2020. Enhanced heat transfer in rectangular duct with punched winglets. Chinese Journal of Chemical Engineering 28(3), pp. 660–671, DOI: 10.1016/j.cjche.2019.09.012.
 
19.
Salhi et al. 2020 – Salhi, J.E., Amghar, K., Bouali, H. and Salhi, N. 2020. Combined heat and mass transfer of fluid flowing through horizontal channel by turbulent forced convection. Modelling and Simulation in Engineering 2, pp. 1–11, DOI: 10.1155/2020/1453893.
 
20.
Salimpour, M. and Yarmohammadi, S. 2012. Effect of twisted tape inserts on pressure drop during R-404A condensation. International Journal of Refrigeration 35(2), pp. 263–269, DOI: 10.1016/j.ijrefrig.2011.11.009.
 
21.
Sarafraz et al. 2019 – Sarafraz, M.M., Safaei, M.R., Tian, Z., Goodarzi, M., Bandarra, E.P. and Arjomandi, M. 2019. Thermal assessment of nano-particulate graphene-water/ethylene glycol nano-suspension in a compact heat exchanger. Energies 12(10), pp. 1–17, DOI: 10.3390/en12101929.
 
22.
Sarafraz et al. 2019a – Sarafraz, M.M., Safaei, M.R., Goodarzi, M., Yang, B. and Arjomandi, M. 2019a. Heat transfer analysis of Ga-In-Sn in a compact heat exchanger equipped with straight micro-passages. International Journal of Heat and Mass Transfer 139, pp. 675–684, DOI: 10.1016/j.ijheatmasstransfer.2019.05.057.
 
23.
Selvam et al. 2013 – Selvam, S., Thiyagarajan, P. and Suresh, S. 2013. Experimental studies on effect of bonding the twisted tape with pins to the inner surface of the circular tube. Thermal Science 18(4), pp. 1273–1283, DOI: 10.2298/TSCI120807036S.
 
24.
Sobhan et al. 1994 – Sobhan, C.B., Mohammed, K.T., Hannan, M. and Krishtaiah, P. 1994. Experimental investigations on a 1-2 heat exchanger with wire-wound tubes. Warme- und Stoffubertragung 29, pp. 211–217.
 
25.
Sugirov et al. 2021 – Sugirov, D.U., Ospanova, S.M., Suimenova, M.K., Izbasar, A.I. and Esbolai, G.I. 2021. Improving the thermal efficiency of convective heating surfaces. Moscow: Mir Nauki.
 
26.
Sugirov, D.U. 2018. Heat transfer in a bundle of smooth pipes when exposed to several types of heat transfer intensification. [In:] Scientific and Educational Space: Development Prospects: Materials of the VII International Scientific and Practical conference, pp. 193–195, Cheboksary: CNS Interactive Plus.
 
27.
Tanirbergenova et al. 2021 – Tanirbergenova, A., Orazbayev, B., Ospanov, Y., Omarova, S. and Kurmashev, I. 2021. Hydrotreating unit models based on statistical and fuzzy information. Periodicals of Engineering and Natural Sciences 9(4), pp. 242–258, DOI: 10.21533/pen.v9i4.2307.
 
28.
Yildiz et al. 1998 – Yildiz, C., Bicer, Y. and Pehlivan, D. 1998. Effect of twisted Stripes on heat transfer and pressure drop in the heat exchangers. Energy Conversion and Management 39(3–4), pp. 331–336, DOI: 10.1016/S0196-8904(96)00194-X.
 
29.
Yu et al. 2022 – Yu, M., Kubiczek, J., Ding, K., Jahanzeb, A. and Iqbal, N. 2022. Revisiting SDG-7 under energy efficiency vision 2050: the role of new economic models and mass digitalization in OECD. Energy Efficiency 15(1):2, DOI: 10.1007/s12053-021-10010-z.
 
30.
Zamankhan, P. 2010. Heat transfer in counterflow heat exchangers with helical turbulators. Commun Nonlinear Sci Numer Simulat 15(10), pp. 2894–2907, DOI: 10.1016/j.cnsns.2009.10.025.
 
eISSN:2720-569X
ISSN:1429-6675
Journals System - logo
Scroll to top