ORIGINAL PAPER
Optimizing the process of mixing diesel fuel and biofuel in a blade mixer to improve mixture quality
 
More details
Hide details
1
Engineering and Technology Faculty, Vinnytsia National Agrarian University, Ukraine
 
2
Faculty of Management and Law, Vinnytsia National Agrarian University, Ukraine
 
 
Submission date: 2024-01-22
 
 
Final revision date: 2024-05-28
 
 
Acceptance date: 2024-05-28
 
 
Publication date: 2024-09-24
 
 
Corresponding author
Ihor Kupchuk   

Engineering and Technology Faculty, Vinnytsia National Agrarian University, Ukraine
 
 
Polityka Energetyczna – Energy Policy Journal 2024;27(3):31-52
 
KEYWORDS
TOPICS
ABSTRACT
This research examines an important aspect of technological processes – the process of mixing diesel fuel and biofuel in a specially designed paddle mixer. The main goal is to optimize and improve the quality of the resulting mixture. The use of the FlowVision CFD (Computational Fluid Dynamics) program in this study is of great importance and helps to achieve significant results in the study and optimization of the diesel-biofuel mixing process. In the context of many industrial and technological processes, where efficient mixing of liquids plays an important role, turbulent mixing is of great importance. Optimal mixing not only improves the quality of products, but also ensures the unity of complex reactions and also helps to reduce the time of completion of the process. It is important to emphasize that the research focuses not only on the quantitative aspects of mixing but also on the study of the influence of the geometry of the mixer on the turbulent characteristics of the flow. This can lead to the development of new mixer designs aimed at maximizing the efficiency of the fuel mixing process, which, in turn, will help save resources and reduce emissions of harmful substances into the atmosphere. This research opens up prospects for further developments in the field of fuel blending technologies, which can lead to real improvements in production and sustainability. The discovery of new methods of optimal mixing of liquids in specially designed mixers can determine the future of energy efficiency and reduce the negative impact on the environment.
METADATA IN OTHER LANGUAGES:
Polish
Optymalizacja procesu mieszania oleju napędowego i biopaliwa w mieszalniku łopatkowym w celu poprawy jakości mieszanki
geometria mieszalnika, rozwiązanie numeryczne, turbulencja, gradient ciśnienia, przepływy turbulentne
W niniejszym artykule analizowany jest ważny aspekt procesów technologicznych – proces mieszania oleju napędowego i biopaliwa w specjalnie zaprojektowanym mieszalniku łopatkowym. Głównym celem jest optymalizacja i poprawa jakości powstałej mieszanki. Wykorzystanie w badaniu programu FlowVision CFD (Computational Fluid Dynamics) ma ogromne znaczenie i pozwala na osiągnięcie znaczących wyników w analizie i optymalizacji procesu mieszania oleju napędowego z biopaliwem. W kontekście wielu procesów przemysłowych i technologicznych, gdzie ważną rolę odgrywa sprawne mieszanie cieczy, duże znaczenie ma mieszanie turbulentne. Optymalne mieszanie nie tylko poprawia jakość produktów, ale także zapewnia jednolitość złożonych reakcji, a także pomaga skrócić czas zakończenia procesu. Należy podkreślić, że badania skupiają się nie tylko na ilościowych aspektach mieszania, ale także na analizie wpływu geometrii mieszadła na turbulentną charakterystykę przepływu. Może to doprowadzić do opracowania nowych konstrukcji mieszadeł mających na celu maksymalizację efektywności procesu mieszania paliw, co w efekcie pozwoli zaoszczędzić zasoby i zmniejszyć emisję szkodliwych substancji do atmosfery. Badania te otwierają perspektywy dalszego rozwoju w dziedzinie technologii mieszania paliw, co może prowadzić do realnej poprawy produkcji i zrównoważonego rozwoju. Odkrycie nowych metod optymalnego mieszania cieczy w specjalnie zaprojektowanych mieszadłach może przesądzić o przyszłości efektywności energetycznej i ograniczeniu negatywnego wpływu na środowisko.
REFERENCES (23)
1.
Aliiev et al. 2021 – Aliiev, E., Pavlenko, S., Golub, G. and Bielka, O. 2021. Research of mechanized process of organic waste composting. Agraarteadus, Journal of Agricultural Science 2022, XXXIII (1), pp. 21–32, DOI: 10.15159/jas.22.04.
 
2.
Bandura et al. 2023 – Bandura, V., Bezbah, I., Kupchuk, I. and Fialkovska, L. 2023. Innovative methods of drying rapeseeds using microwave energy. Polityka Energetyczna – Energy Policy Journal 26(2), pp. 217–230, DOI: 10.33223/epj/163328.
 
3.
Burlaka et al. 2021 – Burlaka, S., Yaropud, V. and Zdyrko, N. 2021. Recommendations for evaluation and diagnosis of diesel engine when using biofuels. Bulletin of Khmelnytsky National University 4 (299), pp. 169–173 (in Ukrainian).
 
4.
Costa, M. and Piazzullo, D. 2018. Biofuel Powering of Internal Combustion Engines: Production Routes,Effect on Performance and CFD Modeling of Combustion. Frontiers in Mechanical Engineering 4(9), pp. 1–14, DOI: 10.3389/fmech.2018.00009.
 
5.
Galushchak et al. 2023 – Galushchak, O., Burlaka, S., Kupchuk, I., Bondarenko, V. and Gontaruk, Y. 2023. Environmental indicators of the operation of a diesel generator running on a mixture of biofuels. Polityka Energetyczna – Energy Policy Journal 26(4), pp. 195–208, DOI: 10.33223/epj/170759.
 
6.
Galushchak, O. 2015. The method of control of the diesel power supply system when using the dynamic regulation of the percentage composition of the mixture of fuels. Scientific works of Vinnytsia National Technical University. Mechanical engineering and transport 3, pp. 1–8.
 
7.
Galushchak, O.O. and Galushchak, D.O. 2014. Algorithm of operation of electronic engine control unit in determining the percentage of biodiesel and diesel fuels. Collection of abstracts of the International scientific-practical conference “The latest technologies for the development of construction, production, operation, repair and examination of the car”, October 15–16, Kharkiv, pp. 215–216.
 
8.
Gunko et al. 2021 – Gunko, I., Hraniak, V., Yaropud, V., Kupchuk, I. and Rutkevych, V. 2021. Optical sensor of harmful air impurity concentration. Przegląd Elektrotechniczny 97(7), pp. 76–79, DOI: 10.15199/48.2021.07.15.
 
9.
Gunko I. et al. 2021 – Gunko, I., Babyn, I., Aliiev, E., Yaropud, V. and Hrytsun, A. Research into operating modes of the air injector of the milking parlor flushing system. U.P.B. Sci. Bull., Series D 83(2), pp. 297–310. [Online] https://www.scientificbulletin... [Accessed: 2024-05-03].
 
10.
Horbay et al. 2018 – Horbay, O., Poliakov, A., Hrechaniuk, M. and Vishtak, I. 2018. Dynamic regulation of the percentage composition of the mix diesel and biodiesel fuel. Transport Problems 13(2), pp. 59–67, DOI: 10.20858/tp.2018.13.2.6.
 
11.
Hraniak et al. 2022 – Hraniak, V.F., Matviychuk, V.A. and Kupchuk, I.M. 2022. Mathematical model and practical implementation of transformer oil humidity sensor. Electronics 26(1), pp. 3–8, DOI: 10.53314/ELS2226003H.
 
12.
Hrushetskyi et al. 2021 – Hrushetskyi, S., Yaropud, V., Kupchuk, I. and Semenyshena, R. 2021. The heap parts movement on the shareboard surface of the potato harvesting machine. Bulletin of the Transilvania University of Braşov. Series II: Forestry, Wood Industry, Agricultural Food Engineering 14(1), pp. 127–140, DOI: 10.31926/but.fwiafe.2021.14.63.1.12.
 
13.
Kaletnik et al. 2017 – Kaletnik, H., Pilvere, I., Nikolaenko, S. and Bulgakov, V. 2017. Investigation of biofuel production possibilities for stabilisation of agro-industrial complex of Ukraine. Engineering For Rural Development, Jelgava, 24–26.05.2017, pp. 1250–1256, DOI: 10.22616/ERDev2017.16. N273.
 
14.
Kaletnik et al. 2020a – Kaletnik, G., Honcharuk, I. and Okhota, Y. 2020a. The Waste-free production development for the energy autonomy formation of Ukrainian agricultural enterprises. Journal of Environmental Management and Tourism 11(3), pp. 513–522, DOI: 10.14505//jemt.v11.3(43).02.
 
15.
Kaletnik et al. 2020b – Kaletnik, Н., Mazur, V., Gunko, І., Ryaboshapka, V., Bulgakov, Olt, J., Raide, V. and Lives, R. 2020b. Study on performance of compression engine operated by biodiesel fuel. Agronomy Research 5, pp. 862–887, DOI: 10.15159/AR.20.027.
 
16.
Kaletnik, G. and Yaropud, V. 2021. Theoretical studies of air losses of air heat exchanger of indirect-evaporative type of livestock rooms. Machinery and Energetics 12(4), pp. 35–41, DOI: 10.31548/machenergy2021.04.035.
 
17.
Kaletnik, H. and Yaropud, V. 2023. Research of pressure losses and justification of forms of side-evaporative heat exchangers channels in livestock premises. Przeglad Elektrotechniczny 99(7), pp. 247–252, DOI: 10.15199/48.2023.07.46.
 
18.
Kupchuk et al. 2022 – Kupchuk, I., Burlaka, S., Galushchak, A., Yemchyk, T., Galushchak, D. and Prysiazhniuk, Y. 2022. Research of autonomous generator indicators with the dynamically changing component of a two-fuel mixture. Polityka Energetyczna – Energy Policy Journal 25(2), pp. 147–162, DOI: 10.33223/epj/150746.
 
19.
Paliy et al. 2021 – Paliy, A., Aliiev, E., Nanka, A., Bogomolov, O., Bredixin, V., Paliy, A., Shkromada, O., Musiienko, Y., Stockiy, A. and Grebenik, N.. Identifying changes in the technical parameters of milking rubber under industrial conditions to elucidate their effect on the milking process. Eastern-European Journal of Enterprise Technologies 3(1) (111), pp. 21–29, DOI: 10.15587/1729-4061.2021.231917.
 
20.
Shevchenko et al. 2021 – Shevchenko, I., Aliiev, E., Viselga, G. and Kaminski, J. 2021. Modeling Separation Process for Sunflower Seed Mixture on Vibro-Pneumatic Separators. Mechanika 27(4), pp. 311−320, DOI: 10.5755/j02.mech.27647.
 
21.
Shevchenko, I. and Aliiev, E. 2020 – Improving theefficiency ofthe process ofcontinuous flowmixing of bulkcomponents. Eastern-European Journal of Enterprise Technologies 6/1 (108), pp. 6–13, DOI: 10.15587/1729-4061.2020.216409.
 
22.
Yaropud et al. 2023 – Yaropud, V., Aliiev, E., Mazur, I. and Burlaka, S. 2023. Simulating the process of operation of vortex layer electromagnetic apparatus with ferromagnetic working elements. Przeglad Elektrotechniczny 99(9), pp. 64–71, DOI: 10.15199/48.2023.09.11.
 
23.
Yaropud, V. 2021. Analytical study of the automatic ventilation system for the intake of polluted air from the pigsty. Scientific Horizons 24(3), pp. 19–27, DOI: 10.48077/scihor.24(3).2021.19-27.
 
eISSN:2720-569X
ISSN:1429-6675
Journals System - logo
Scroll to top