ORIGINAL PAPER
SMART system for the implementation of rational heat-supply regimes
 
More details
Hide details
1
L.N. Gumilyov Eurasian National University, Kazakhstan
 
2
Karaganda Technical University, Kazakhstan
 
3
S. Seifullin Kazakh Agrotechnical University, Kazakhstan
 
 
Submission date: 2022-04-15
 
 
Final revision date: 2022-05-07
 
 
Acceptance date: 2022-05-08
 
 
Publication date: 2022-06-28
 
 
Corresponding author
Darmen Abulkhairov   

S. Seifullin Kazakh Agrotechnical University, Kazakhstan
 
 
Polityka Energetyczna – Energy Policy Journal 2022;25(2):137-146
 
KEYWORDS
TOPICS
ABSTRACT
This article presents the current and future situation of heat consumption in the Republic of Kazakhstan. The predicted growth of thermal loads until 2030 is shown in the example of Karaganda city. Therefore, the task of creating and implementing automated heat points into the system of heat-supply complexes of cities of the Republic of Kazakhstan is relevant. The article considers the concept of measurement and processing of information in district heating supply systems based on variable cycles of the interrogation of parameters of heat supply at the heat points. As a result of the conducted research, a microcontroller SMART-system for the implementation of rational modes of heat supply used in the process of obtaining and processing information on heat-consumption parameters and making control decisions regarding variable cycles of heat-supply-parameter interrogation at heat points was developed and implemented. The results of the study have been successfully tested on the facilities equipped with automated heat points.
METADATA IN OTHER LANGUAGES:
Polish
System SMART do realizacji racjonalnych reżimów zaopatrzenia w ciepło
ciepłownictwo miejskie, punkt cieplny, automatyka, pomiary i przetwarzanie, badanie parametrów
W artykule przedstawiono aktualną i przyszłą sytuację zużycia ciepła w Republice Kazachstanu. Przewidywany wzrost obciążeń termicznych do 2030 roku pokazuje przykład miasta Karaganda. Dlatego istotne jest stworzenie i wdrożenie zautomatyzowanych punktów ciepłowniczych w system kompleksów ciepłowniczych miast Republiki Kazachstanu. W artykule rozważono koncepcję pomiaru i przetwarzania informacji w sieciach ciepłowniczych w oparciu o zmienne cykle badania parametrów zaopatrzenia w ciepło w punktach cieplnych. W wyniku przeprowadzonych badań opracowano i wdrożono mikrokontroler SMART-system do realizacji racjonalnych trybów zaopatrzenia w ciepło, który jest wykorzystywany w procesie pozyskiwania i przetwarzania informacji o parametrach zużycia ciepła oraz służy do podejmowania decyzji sterujących dla zmiennych parametrów zaopatrzenia w ciepło w punktach cieplnych. Wyniki badań zostały pomyślnie przetestowane na obiektach wyposażonych w zautomatyzowane punkty grzewcze.
REFERENCES (20)
1.
Abid et al. 2021 – Abid, M., Hewitt, N., Huang, M., Wilson, C. and Cotter, D. 2021. Domestic retrofit assessment of the heat pump system considering the impact of heat supply temperature and operating mode of control-a case study. Sustainability (Switzerland) 13(19), 857, DOI: 10.3390/su131910857.
 
2.
Agency for Strategic Planning and Reforms of the Republic of Kazakhstan Bureau of National Statistics. 2021. [Online] https://stat.gov.kz/ [Accessed: 2021-12-14].
 
3.
Agilbayeva, M. and Kalinin, A. 2019. The development of the district heat supply system of the city of Karaganda. Innovative Technologies in Environmental Science and Education 135, 01031, DOI: 10.1051/e3sconf/201913501031.
 
4.
Decree of the Government of the Republic of Kazakhstan No. 473 “On approval of the Program for the modernization of housing and communal services of the Republic of Kazakhstan for 2011–2020”. 2011. [Online] https://adilet.zan.kz/rus/docs... [Accessed: 2021-12-04].
 
5.
Decree of the Government of the Republic of Kazakhstan No. 724 “On approval of the Concept for the development of the fuel and energy complex of the Republic of Kazakhstan until 2030”. 2014. [Online] https://adilet.zan.kz/rus/docs... [Accessed: 2021-12-15].
 
6.
Design of Thermal Networks. 2018. [Online] https://cutt.ly/DPPvvmp [Accessed: 2021-12-08].
 
7.
Guzzini et al. 2020 – Guzzini, A., Pellegrini, M., Pelliconi, E. and Saccani, C. 2020. Low temperature district heating: An expert opinion survey. Energies 13(4), 810, DOI: 10.3390/en13040810.
 
8.
Hryshchenko, V.O. 2020. Modeling and calculation power saving modes grain drying materials under energy fields. Machinery and Energetics 13(3), pp. 23–29, DOI: 10.31548/machenergy2020.03.023.
 
9.
Huo et al. 2020 – Huo, L., Yao, Z., Jia, J., Zhao, L., Cong, H., Meng, H. and Yuan, Y. 2020. Evaluation of different clean heat supply modes based on crop straws in the rural area of northern China. International Journal of Agricultural and Biological Engineering 13(5), pp. 209–217, DOI: 10.25165/j.ijabe.20201305.5600.
 
10.
Karasev et al. 2004 – Karasev, N.I., Kritsky, A.V., Tomilova, N.I. and Tsok, G.N. 2004. Informatization of district heating systems in the infrastructure of life support of megalopolises of Kazakhstan. Almaty: Publishing house of RIO.
 
11.
Moallemi et al. 2019 – Moallemi, A., Arabkoohsar, A., Pujatti, F.j.p., Valle, R.M. and Ismail, K.A.R. 2019. Non-uniform temperature district heating system with decentralized heat storage units, a reliable solution for heat supply. Energy 167, pp. 80–91.
 
12.
Production Cooperative Firm “Sirius” 2021. [Online] http://tgid.kz/ [Accessed: 2021-12-13].
 
13.
Rybakova et al. 2014 – rybakova, d.a., baklanov, A.E. and Kvassov, A.I. 2014. The use of a conveyor data processing system to regulate the operation of heat points. Bulletin of EKSTU 3, pp. 103–106.
 
14.
Sagynganova et al. 2020 – Sagynganova, I.k., Kvasov, A.I. and Kalinin, A.A. 2020. Comprehensive methods to obtain and process information flows in centralized heat supply systems. Materials Science and Engineering 972(1), 012074.
 
15.
Sorknæs et al. 2020 – Sorknæs, P., Lund, H., Skov, I.r., Djørup, S., Skytte, K., Morthorst, P.E. and Fausto, F. 2020. Smart energy markets – Future electricity, gas and heating markets. Renewable and Sustainable Energy Reviews 119, 109655, DOI: 10.1016/j.rser.2019.109655.
 
16.
Tomilova, N.I. 2010. Development of an information system to support decision-making on the implementation of commissioning and promising measures in the heat supply systems of megalopolises. Karaganda: Karaganda State Technical University.
 
17.
United Nations Framework Convention on Climate Change. 1992. [Online] https://cutt.ly/ePPzyXf [Accessed: 2021-12-06].
 
18.
Wirtz et al. 2020 – Wirtz, M., Kivilip, L., Remmen, P. and Müller, D. 2020. 5th generation district heating: A novel design approach based on mathematical optimization. Applied Energy 260, 114158, DOI: 10.1016/j.apenergy.2019.114158.
 
19.
Yang et al. 2020 – Yang, J., Zhang, Z., Hong, M., Yang, M. and Chen, J. 2020. An oligarchy game model for the mobile waste heat recovery energy supply chain. Energy 210, 118548, DOI: 10.1016/j.energy.2020.118548.
 
20.
Yong et al. 2021 – Yong, C., Yifan, Z., Xiao, W., Heng, Z. and Yi, L. 2021. The design of two-channel outputs switching mode power supply based on TOP100Y. Smart Innovation, Systems and Technologies 183, pp. 147–155.
 
eISSN:2720-569X
ISSN:1429-6675
Journals System - logo
Scroll to top