ORIGINAL PAPER
Shrinking characteristics of a single biomass particle in oxidation conditions
More details
Hide details
1
Technical College – Sofia, Department of Energy and Mechanical Engineering, Technical University of Sofia, Bulgaria
These authors had equal contribution to this work
Submission date: 2023-11-20
Final revision date: 2024-08-01
Acceptance date: 2024-09-25
Publication date: 2024-12-11
Corresponding author
Iliyana Naydenova
Technical College - Sofia, Department of Energy and Mechanical Engineering, Technical University of Sofia, Blvd. St. Kliment Ochridski 8, 1000, Sofia, Bulgaria
Polityka Energetyczna – Energy Policy Journal 2024;27(4):121-132
KEYWORDS
TOPICS
ABSTRACT
In the context of the Net Zero Emission, using of biomass of different origins is assumed to be an acceptable alternative to fossil fuel thermo-chemical conversion for power generation or goods production. Biomass combustion is characterised by heterogeneous kinetics, where the oxidised substance is in a solid state. The reaction takes place primarily along the surface separating the two phases. The rate of combustion can be expressed by the amount of reacted substance per unit surface area or, alternatively , by the diameter or mass loss profile. The present investigation aimed to study shrinking characteristics during single particle combustion of spherically shaped solid (softwood) particles. The experiment was conducted in a laboratory scale Horizontal Tube Furnace (HTF) type reactor. The initial and resulting particle mass and diameter were experimentally measured, based on which the fuel particle density, surface, and volume were estimated for each biomass particles. The dimensional evolution of the fuel particle was investigated in terms of the effect of temperature and residence time of the fuel particles in the reaction zone. The experiments were carried out at atmospheric pressure, constant air flow rate, and at two different temperatures (700 and 800°C). The particle shrinkage improved with increasing the residence time, until the process reached its final stage of residual combustion. The studied temperature range showed faint but distinct temperature dependence.
METADATA IN OTHER LANGUAGES:
Polish
Charakterystyka kurczenia się pojedynczej cząstki biomasy w warunkach utleniania
konwersja biomasy, spalanie pojedynczych cząstek, kurczenie się cząstek biopaliw stałych
W kontekście zerowej emisji netto wykorzystanie biomasy różnego pochodzenia jest przyjmowane jako dopuszczalna alternatywa dla termochemicznej konwersji paliw kopalnych w celu wytwarzania energii lub produkcji towarów. Spalanie biomasy charakteryzuje się heterogeniczną kinetyką, w której utleniona substancja znajduje się w stanie stałym. Reakcja zachodzi głównie wzdłuż powierzchni oddzielającej dwie fazy. Szybkość spalania można wyrazić ilością reagującej substancji na jednostkę powierzchni, alternatywnie również średnicą koryta lub profilem utraty masy. Niniejsza analiza miała na celu zbadanie charakterystyki kurczenia się podczas spalania pojedynczych cząstek sferycznych cząstek stałych (drewna miękkiego). Eksperyment przeprowadzono w reaktorze w skali laboratoryjnej typu pieca rurowego poziomego (HTF). Początkową i wynikową masę i średnicę cząstek zmierzono eksperymentalnie, na podstawie czego oszacowano gęstość, powierzchnię i objętość cząstek paliwa dla każdej cząstki biomasy. Ewolucję wymiarową cząstek paliwa zbadano pod kątem wpływu temperatury i czasu przebywania cząstek paliwa w strefie reakcji. Eksperymenty przeprowadzono przy ciśnieniu atmosferycznym, stałym natężeniu przepływu powietrza i w dwóch różnych temperaturach (700 i 800°C). Skurcz cząstek poprawiał się wraz ze wzrostem czasu przebywania, aż proces osiągnął końcowy etap spalania resztkowego. Badany zakres temperatur wykazywał słabą, ale wyraźną zależność temperaturową.
REFERENCES (25)
1.
Ahmad et al. 2020 – Ahmad, Z. Al Dajani, W.W., Paleologou, M. and Xu, C. 2020. Sustainable Process for the Depolymerization/Oxidation of Softwood and Hardwood Kraft Lignins Using Hydrogen Peroxide under Ambient Conditions. Molecules 25(10), DOI: 10.3390/molecules25102329.
2.
Bai et al. 2017 – Bai, X., Lu, G., Bennet, T., Sarroza, A., Eastwick, C., Liu, H. and Yan, Y. 2017. Combustion behavior profiling of single pulverized coal particles in a drop tube furnace through high-speed imaging and image analysis. Experimental Thermal and Fluid Science 85, pp. 322–330, DOI: 10.1016/j.expthermflusci.2017.03.018.
3.
Brezin et al. 2013 – Brezin, V., Antov, P. and Kovacheva, A. 2013. Organic biomass – source for production of biogenic fuels (Rastitelna biomasa – iztochnik za poluchavane na biogenni goriva). University of Forestry – Sofia (in Bulgarian).
4.
Bryden, K.M. and Hagge, M.J. 2003. Modeling the combined impact of moisture and char shrinkage on the pyrolysis of a biomass particle. Fuel 82(13), pp. 1633–1644, DOI: 10.1016/S0016-2361(03)00108-X.
5.
Caposciutti et al. 2019 – Caposciutti, G. Almuina-Villar, H., Dieguez-Alonso, A., Gruber, T., Kelz, J., Desideri, U., Hochenauer, C., Scharler, R. and Anca-Couce, A. 2019. Experimental investigation on biomass shrinking and swelling behaviour: Particles pyrolysis and wood logs combustion. Biomass and Bioenergy 123, pp. 1–13, DOI: 10.1016/j.biombioe.2019.01.044.
6.
Davidsson, K. and Pettersson, J. 2002. Birch wood particle shrinkage during rapid pyrolysis. Fuel 81(3), pp. 263–270, DOI: 10.1016/S0016-2361(01)00169-7.
7.
Ivanov et al. 2022 – Ivanov, I., Kostov, K., Atanasov, K., Denev, I. and Krystev, N. 2022. Analysis of the air exchange in livestock building through the computational fluid dynamics. EUREKA: Physics and Engineering 3, pp. 28–39, DOI: 10.21303/2461-4262.2022.002349.
8.
Iontchev et al. 2020 – Iontchev, E., Miletiev, R., Yordanov, R. and Damyanov, I. 2020. Measurement and Analysis of PM Particles Emitted by Automotive Brakes. 55th International Scientific Conference on Information, Communication and Energy Systems and Technologies (ICEST), Niš, Serbia, pp. 231–234, DOI: 10.1109/ICEST49890.2020.
9.
Kostov, K.V. 2022. Analysis and assessment of risk in the implementation of a cogeneration installation at a livestock farm. Polityka Energetyczna – Energy Policy Journal 25(3), pp. 123–132, DOI: 10.33223/epj/153026.
10.
Kostov et al. 2023 – Kostov, K.V., Ivanov, I.I. and Atanasov, K.T. 2023. The analysis of the energy index and the application of equivalent distillation productivity as criteria for identification of the energy efficiency of a petroleum refinery. Polityka Energetyczna – Energy Policy Journal 26(1), pp. 133–144, DOI: 10.33223/epj/161625.
11.
Kwiatkowski et al. 2014 – Kwiatkowski, K., Bajer, K., Celińska, A., Dudyński, M., Korotko, J. and Sosnowska, M. 2014. Pyrolysis and gasification of a thermally thick wood particle – effect of fragmentation. Fuel 132, pp. 125–134, DOI: 10.1016/j.fuel.2014.04.057.
12.
Lackner et al. 2004 – Lackner, M., Loeffler, G., Totschnig, G., Winter, F. and Hofbauer, H. 2004. Carbon conversion of solid fuels in the freeboard of a laboratory-scale fluidized bed combustor – application of in situ laser spectroscopy. Fuel 83(10), pp. 1289–1298, DOI: 10.1016/j.fuel.2003.12.012.
13.
Levenspiel, O. 1998. Chemical Reaction Engineering, 3rd Edition, Publisher: Wiley; pp. 688.
14.
Naydenova et al. 2020 – Naydenova, I., Sandov, O., Wesenauer, F., Laminger, T. and Winter, F. 2020. Pollutants formation during single particle combustion of biomass under fluidized bed conditions: An experimental study. Fuel 278, DOI: 10.1016/j.fuel.2020.117958.
15.
Net Zero Roadmap. A Global Pathway to Keep the 1.5°C Goal in Reach 2023. International Energy Agency. Flagship report, September 2023. [Online]
https://www.iea.org/reports/ne... [Accessed: 2023-11-16].
16.
Obernberger et al. 2006 – Obernberger, I., Brunner, T. and Baernthaler, G. 2006. Chemical properties of solid biofuels – significance and impact. Biomass Bioenergy 30, pp. 973–982, DOI: 10. 1016/j.biombioe.2006.06.011.
17.
Pereira, S. and Costa, M. 2017. Short rotation copies for bioenergy: From biomass characterization to establishment – a review. Renewable Sustainable Energy Rev 74, pp. 1170–1180, DOI: 10.1016.j.rser.2017.03.006.
18.
Sadhukhan et al. 2010 – Sadhukhan, A.K., Gupta, P. and Saha, R.K. 2010. Modelling of combustion characteristics of high ash coal char particles at high pressure: Shrinking reactive core model. Fuel 89, pp. 162–169, DOI: 10.1016/j.fuel.2009.07.029.
19.
Sandov, O. 2019. Construction of a flow reactor for the combustion/pyrolysis of biomass fuels. Proceedings of XXIV Scientific conference with international participation FPEPM 2019, pp. 258–268.
20.
Sandov et al. 2021 – Sandov, O., Naydenova, I. and Velichkova, R. 2021. Primary gaseous emissions during biomass combustion, 2021 6th International Symposium on Environment-Friendly Energies and Applications (EFEA), Sofia, Bulgaria, pp. 1–6, doi: 10.1109/EFEA49713.2021.9406230.
21.
Sandov, O. 2022. Dynamics of the Process of Combustion and Generation of Harmful Substance Using Alternative Fuels. Ph.D. Thesis, Technical University of Sofia, Sofia, Bulgaria, 2022.
22.
Vassilev et al. 2010 – Vassilev, S.V., Baxter, D., Andersen, L.K. and Vassileva, C.G. 2010. An overview of the chemical composition of biomass. Fuel 89, pp. 913–933, DOI: 10.1016/j.fuel.2009.10.022.
23.
Vassilev et al. 2013a – Vassilev, S.V., Baxter, D., Andersen, L.K. and Vassileva, C.G. 2013a. An overview of the composition and application of biomass ash. Part 1. Phase–mineral and chemical composition and classification. Fuel 105, pp. 40–76, DOI: 10.1016/j.fuel.2012.09.041.
24.
Vassilev et al. 2013b – Vassilev, S.V., Baxter, D., Andersen, L.K. and Vassileva, C.G. 2013b. An overview of the composition and application of biomass ash. Part 2. Potential utilisation, technological and ecological advantages and challenges. Fuel 105, pp. 19–39, DOI: 10.1016/j.fuel.2012.10.001.
25.
Wesenauer et al. 2021 – Wesenauer, F., Frei, A., Jordan, C., Pichler, M., Winter, F. and Harasek, M. 2021. A three-stage reaction model for the conversion of organic and inorganic carbon in clay brick firing. [In:] Proceedings of the 10th European Combustion Meeting 2021, held on 14–15 April 2021, Naples, Italy.