ORIGINAL PAPER
The influence of flow velocity and turbulence on heat exchange processes and the uniformity of heat transfer fluid heating in solar water heating collectors
More details
Hide details
1
Osh Technological University named after M. Adyshev, Kyrgyzstan
Submission date: 2025-04-08
Final revision date: 2025-05-29
Acceptance date: 2025-05-29
Publication date: 2025-06-23
Polityka Energetyczna – Energy Policy Journal 2025;28(2):191-210
KEYWORDS
TOPICS
ABSTRACT
Enhancing the thermal efficiency and operational stability of solar water heating collectors necessitates optimizing heat transfer and ensuring uniform heating of the working fluid. This study examines the impact of flow velocity and turbulence on heat exchange processes and temperature distribution within the ribbed tubes of a solar collector. The problem is significant for maximizing solar energy utilization and minimizing auxiliary energy losses. Based on a review of recent advances in thermal-fluid modeling, the study aimed to identify optimal flow regimes that balance heat transfer enhancement with energy efficiency. Numerical simulations were conducted using the finite difference method, assuming steady-state turbulent flow in a 1.2 m ribbed tube with a 0.02 m internal diameter, wall temperature of 360 K, and inlet water temperature of 300 K. Thermophysical properties of water were set at 330 K. Results showed that an optimal flow velocity range of 3–4 m/s ensured efficient heat transfer and minimized energy losses. At 3.5 m/s, the outlet temperature reached 348 K, while the heat transfer coefficient peaked at 520 W/m2·K. The uniform heating coefficient
CONFLICT OF INTEREST
The Authors have no conflicts of interest to declare.
METADATA IN OTHER LANGUAGES:
Polish
Wpływ prędkości przepływu i turbulencji na procesy wymiany ciepła oraz jednolitość ogrzewania czynnika grzewczego w kolektorach słonecznych do podgrzewania wody
dynamika płynu roboczego, równomierny rozkład temperatury, żebrowane powierzchnie, modelowanie numeryczne, straty ciśnienia w kolektorach słonecznych
Poprawa sprawności cieplnej i stabilności operacyjnej kolektorów słonecznych do podgrzewania wody wymaga optymalizacji wymiany ciepła i uzyskania równomiernego ogrzewania czynnika roboczego. W niniejszym artykule zbadano, w jaki sposób prędkość przepływu i turbulencja wpływają na procesy wymiany ciepła i rozkład temperatury w żebrowanych rurach kolektora słonecznego. Problem ten jest istotny dla maksymalizacji wykorzystania energii słonecznej i minimalizacji strat energii pomocniczej. W oparciu o przegląd ostatnich postępów w modelowaniu cieplno-płynowym, w artykule sformułowano cel zidentyfikowania optymalnych reżimów przepływu, które równoważą zwiększenie wymiany ciepła z efektywnością energetyczną. Symulacje numeryczne przeprowadzono przy użyciu metody różnic skończonych, zakładając ustalony przepływ turbulentny w żebrowanej rurze o średnicy 1,2 m i średnicy wewnętrznej 0,02 m, temperaturze ścianki 360 K i temperaturze wody wlotowej 300 K. Właściwości termofizyczne wody ustalono na 330 K. Wyniki wykazały, że optymalny zakres prędkości przepływu 3–4 m/s zapewniał skuteczną wymianę ciepła i minimalizował straty energii. Przy 3,5 m/s temperatura na wylocie osiągnęła 348 K, podczas gdy współczynnik przenikania ciepła osiągnął szczyt 520 W/m2·K. Jednorodny współczynnik ogrzewania Ru zmniejszył się z 0,0135 przy 0,5 m/s do 0,0095 przy 3,5 m/s, co wskazuje na znaczną poprawę jednorodności temperatury. Żebrowane powierzchnie zwiększyły współczynnik przenikania ciepła o 25–35% w porównaniu z gładkimi rurami, nawet przy umiarkowanych prędkościach. Badanie pomyślnie zrealizowało swój cel i oferuje praktyczne zalecenia dotyczące optymalizacji konstrukcji i działania systemów solarnych w celu zapewnienia stabilnej i energooszczędnej wydajności.
REFERENCES (40)
1.
Abdukarimov et. al. 2024 – Abdukarimov, B., Orzimatov, J., Usmonov, M., Mullayev, I., Raxmonkulova, S., Qosimov, A. and Sirojiddinov, D. 2024. Hydrodynamic processes that occur in a solar air heater collector with a triangle channel. E3S Web of Conferences 508, DOI: 10.1051/e3sconf/202450802002.
2.
Avargani et. al. 2023 – Avargani, V.M., Zendehboudi, S. and Zamani, M.A. 2023. Performance evaluation of various nano heat transfer fluids in charging/discharging processes of an indirect solar air heating system. Energy 274, DOI: 10.1016/j.energy.2023.127281.
3.
Babar et. al. 2024 – Babar, H., Wu, H., Zhang, W., Shah, T.R., McCluskey, D. and Zhou, C. 2024. The promise of nanofluids: A bibliometric journey through advanced heat transfer fluids in heat exchanger tubes. Advances in Colloid and Interface Science 325, DOI: 10.1016/j.cis.2024.103112.
4.
Blinov et. al. 2004 – Blinov, D.G., Prokopov, V.G., Sherenkovskii, Yu.V., Fialko, N.M. and Yurchuk, V.L. 2004. Effective method for construction of low-dimensional models for heat transfer process. International Journal of Heat and Mass Transfer 47(26), pp. 5823–5828. DOI: 10.1016/j.ijheatmasstransfer.2004.07.020.
5.
Dhavale, A.A. and Lele, M.M. 2024. Enhancing thermal-hydraulic performance in heat exchangers with metal foam inserts: A comprehensive experimental investigation. Experimental Heat Transfer. DOI: 10.1080/08916152.2024.2382806.
6.
Dinzhos et. al. 2005 – Dinzhos, R.V., Privalko, E.G. and Privalko, V.P. 2005. Enthalpy relaxation in the cooling/heating cycles of polyamide 6/ organoclay nanocomposites. I. Nonisothermal crystallization. Journal of Macromolecular Science - Physics 44 B(4), pp. 421–430, DOI: 10.1081/MB-200061610.
7.
Douvi et. al. 2021 – Douvi, E., Pagkalos, C., Dogkas, G., Koukou, M.K., Stathopoulos, V.N., Caouris, Y. and Vrachopoulos, M.G. 2021. Phase change materials in solar domestic hot water systems: A review. International Journal of Thermofluids 10, DOI: 10.1016/j.ijft.2021.100075.
8.
Fialko et. al. 2020 – Fialko, N.M., Navrodska, R.O., Gnedash, G.O., Presich, G.O. and Shevchuk, S.I. 2020. Study of heat-recovery systemsf or heating and moisturing combustionair of boilerunits. Science and Innovation 16(3), pp. 43-49. DOI: 10.15407/scine16.03.043.
9.
Gallardo et. al. 2025 – Gallardo, J.J., De los Santos, D., Carrillo-Berdugo, I., Alcántara, R. and Navas, J. 2025. On the enhancement of the efficiency of concentrated solar power plants using nanofluids based on a linear silicone fluid and Pt nanoparticles. Scientific Reports 15, DOI: 10.1038/s41598-024-84490-1.
10.
Golyshev et. al. 2003 – Golyshev, L.V., Fil’, S.A., Mysak, I.S., Kotel’nikov, N.I. and Sidorenko, A.P. 2003. Transient performance of a TPP-210A boiler performed with the use of a system of RCA-2000 analyzers. Power Technology and Engineering 37(4), pp. 244–247, DOI: 10.1023/A:1026385907278.
11.
Haeri et. al. 2024 – Haeri, S.Z., Khiadani, M., Ramezanzadeh, B., Mohammed, H.A. and Zargar, M. 2024. Review on stability, thermophysical properties, and solar harvesting applications of titanium nitride-based nanofluids: Current status and outlook. Energy Fuels 38(4), pp. 2548–2572, DOI: 10.1021/acs.energyfuels.3c03360.
12.
Halimi et. al. 2023 – Halimi, M., El Amrani, A., Chaanaoui, M., Amrani, A.I., Oumachtaq, A. and Messaoudi, C. 2023. Investigation of parabolic trough collector receiver with U-pipe exchanger using a numerical approach: Towards temperature non-uniformity optimization. Applied Thermal Engineering 234, DOI: 10.1016/j.applthermaleng.2023.121335.
13.
Havrylenko et. al. 2021 – Havrylenko, Y., Kholodniak, Y., Halko, S., Vershkov, O., Bondarenko, L., Suprun, O., Miroshnyk, O., Shchur, T., Śrutek, M. and Gackowska, M. 2021. Interpolation with specified error of a point series belonging to a monotone curve. Entropy 23(5), DOI: 10.3390/e23050493.
14.
Hou et. al. 2023 – Hou, Z., Huang, X., Gao, Y., Zhang, S. and Wang, H. 2023. Experimental investigation on heat transfer of supercritical water flowing in a horizontal tube with axially non-uniform heating. International Journal of Heat and Mass Transfer 211, DOI: 10.1016/j.ijheatmasstransfer.2023.124219.
15.
Hou et. al. 2024 – Hou, Z., Yang, C., Wang, H. and Li, H. 2024. Heat transfer characteristics and optimization strategies in supercritical fluid heat exchangers with non-uniform thermal boundaries: A systematic review. International Journal of Heat and Fluid Flow 110, DOI: 10.1016/j.ijheatfluidflow.2024.109582.
16.
Hussein et. al. 2025 – Hussein, A.A., Auda, A.C., Showard, A.F. and Dawood, H.I. 2025. Heat transfer enhancement by utilizing Al2O3-Water nanofluid in a coiled agitated vessel. Case Studies in Thermal Engineering 66, DOI: 10.1016/j.csite.2024.105740.
17.
Iskenderov et. al. 2024 – Iskenderov, U., Khachaturian, O., Cruz, D.T., Oviedo, G. and Pavlovskyi, S. 2024. Improving thermal comfort and energy saving in buildings using advanced optimal configuration approaches for heating structures and panels. Architecture Image Studies 5(2), pp. 96–111, DOI: 10.48619/ais.v5i2.1000.
18.
Ismanzhanov et. al. 2012 – Ismanzhanov, A.I., Murzakulov, N.A. and Azimzhanov, O.A. 2012. Investigation on heat exchange in interlayer space of multilayer greenhouses. Applied Solar Energy (English translation of Geliotekhnika) 48(2), pp. 118–120, DOI: 10.3103/S0003701X12020107.
19.
Jaiswal et. al. 2023 – Jaiswal, P., Kumar, Y., Das, L., Mishra, V., Pagar, R., Panda, D. and Biswas, K.G. 2023. Nanofluids guided energy-efficient solar water heaters: Recent advancements and challenges ahead. Materials Today Communications 37, DOI: 10.1016/j.mtcomm.2023.107059.
20.
Kovalenko, Yu. and Khandogina, O. 2022. Consideration of climate conditions in comparative environmental and economic assessment of energy carriers. Ecological Safety and Balanced Use of Resources 13(2), pp. 111–121, DOI: 10.31471/2415-3184-2022-2(26)-111-121.
21.
Kudabayev et. al. 2022 – Kudabayev, R., Mizamov, N., Zhangabay, N., Suleimenov, U., Kostikov, A., Vorontsova, A., Buganova, S., Umbitaliyev, A., Kalshabekovа, E. and Aldiyarov, Z. 2022. Construction of a model for an enclosing structure with a heat-accumulating material with phase transition taking into account the process of solar energy accumulation. Eastern-European Journal of Enterprise Technologies 6(8–120), pp. 26–37, DOI: 10.15587/1729-4061.2022.268618.
22.
Kumar, M.S. and Abraham, S. 2024. Applications of pulsating heat pipe (PHP) as an efficient heat transfer device: A review of recent developments. Heat and Mass Transfer 60, pp. 1285–1311, DOI: 10.1007/s00231-024-03491-y.
23.
Li et. al. 2023 – Li, W., Zehforoosh, A., Chauhan, B.S., Nutakki, T.U., Ahmad, S.F., Muhammad, T., Defalla, A.F. and Lei, T. 2023. Entropy generation analysis on heat transfer characteristics of Twisted corrugated spiral heat exchanger utilized in solar pond. Case Studies in Thermal Engineering 52, DOI: 10.1016/j.csite.2023.103650.
24.
Mohammed et. al. 2023 – Mohammed, F.Z., Hussein, A.M., Danook, S.H. and Mohamad, B. 2023. Characterization of a flat plate solar water heating system using different nano-fluids. AIP Conference Proceedings 2901, DOI: 10.1063/5.0178901.
25.
Olabi et. al. 2021 – Olabi, A.G., Wilberforce, T., Sayed, E.T., Elsaid, K., Rahman, S.A. and Abdelkareem, M.A. 2021. Geometrical effect coupled with nanofluid on heat transfer enhancement in heat exchangers. International Journal of Thermofluids 10, DOI: 10.1016/j.ijft.2021.100072.
26.
Pahlavanian et. al. 2024 – Pahlavanian, M.H., Jadidi, A.M., Zaboli, M. and Saedodin, S. 2024. Harmonizing green energy: Enhancing parabolic trough solar collectors through numerical optimization, twisted tapes, and nanofluids, with an environmental perspective. Journal of Thermal Analysis and Calorimetry 149, pp. 9731–9750, DOI: 10.1007/s10973-024-13386-z.
27.
Pandey, V.K. and Prakash, O. 2025. Experimental investigation and simulation of a helical coil heat exchanger with hematite thermal reservoir. Environmental Progress & Sustainable Energy 44(2), pp. 1–13, DOI: 10.1002/ep.14562.
28.
Pasichnyk et. al. 2024 – Pasichnyk, P., Pryimak, O., Pohosov, O., Kulinko, Y. and Koziachyna, B. 2024. Experimental Study of the Aerodynamic Characteristics of a Solar Air Collector with an Absorber Made of Carbon Textile. Lecture Notes in Civil Engineering 604 LNCE, pp. 426–435, DOI: 10.1007/978-3-031-67576-8_38.
29.
Rahman et. al. 2022 – Rahman, M., Shafiqul, I.M. and Khan, M.A. 2022. Numerical investigation and benchmarking of heat transfer and pressure loss characteristics with two-sided rib-roughened and two-sided heat supply in narrow rectangular channels. Thermal Science and Engineering Progress 41, DOI: 10.1016/j.tsep.2023.101812.
30.
Redko et. al. 2018 – Redko, A., Kulikova, N., Pavlovskiiy, S. and Redko, A. 2018. Simulation and optimization of heat-exchanger parameters of heat pipes by changes of entropy. Heat Transfer Research 49(16), pp. 1545–1557, DOI: 10.1615/HeatTransRes.2018019336.
31.
Said et. al. 2025 – Said, Z., Bellos, E., Ali, H.M., Rahman, S. and Tzivanidis, C. 2025. Nanofluids, turbulators, and novel working fluids for heat transfer processes and energy applications: Current status and prospective. Applied Thermal Engineering 258, DOI: 10.1016/j.applthermaleng.2024.124478.
32.
Skochko et. al. 2024 – Skochko, V.I., Solonnikov, V.H., Pohosov, O.H., Haba, K.O., Kulinko, Y.O. and Koziachyna, B.I. 2024. Minimization of Heat Losses in District Heating Networks by Optimizing their Configuration. Problems of the Regional Energetics 3, pp. 182–195, DOI: 10.52254/1857-0070.2024.3-63.15.
33.
Temirbaeva et al. 2024 – Temirbaeva, N., Sadykov, M., Osmonov, Zh., Osmonov, Y. and Karasartov, U. 2024. Renewable energy sources in Kyrgyzstan and energy supply to rural consumers. Machinery & Energetics 15(3), pp. 22–32, DOI: 10.31548/machinery/3.2024.22.
34.
Voloshina et. al. 2020 – Voloshina, A., Panchenko, A., Boltyansky, O. and Titova, O. 2020. Improvement of manufacture workability for distribution systems of planetary hydraulic machines. Lecture Notes in Mechanical Engineering (pp. 732–741). Springer, Cham. DOI: 10.1007/978-3-030-22365-6_73.
35.
Xiong et. al. 2021 – Xiong, Q., Altnji, S., Tayebi, T., Izadi, M., Hajjar, A., Sundén, B. and Li, L.K. 2021. A comprehensive review on the application of hybrid nanofluids in solar energy collectors. Sustainable Energy Technologies and Assessments 47, DOI: 10.1016/j.seta.2021.101341.
36.
Xu et. al. 2022 – Xu, Y., Tian, R., Dai, X. and Shi, L. 2022. Coupling effect between heat flux distribution and buoyancy of supercritical CO₂ heat transfer with nonuniform heat flux in parabolic-trough collector. International Journal of Heat and Mass Transfer 195, DOI: 10.1016/j.ijheatmasstransfer.2022.123197.
37.
Yang et. al. 2023 – Yang, P., Ling, W., Tian, K., Zeng, M. and Wang, Q. 2023. Flow distribution and heat transfer performance of two-phase flow in parallel flow heat exchange system. Energy 270, DOI: 10.1016/j.energy.2023.126957.
38.
Yang et. al. 2025 – Yang, W., Zhang, H., Yang, J. and Qu, J. 2025. Numerical study on fluid flow and heat transfer characteristics of supercritical CO2 in horizontal tube under various non-uniform heating conditions. International Journal of Heat and Mass Transfer 236(2), DOI: 10.1016/j.ijheatmasstransfer.2024.126399.
39.
Zhangabay et. al. 2023 – Zhangabay, N., Bonopera, M., Baidilla, I., Utelbayeva, A. and Tursunkululy, T. 2023. Research of Heat Tolerance and Moisture Conditions of New Worked-Out Face Structures with Complete Gap Spacings. Buildings 13(11), DOI: 10.3390/buildings13112853.
40.
Zvorykin et. al. 2016 – Zvorykin, A., Aleshko, S., Fialko, N., Maison, N., Meranova, N., Voitenko, A. and Pioro, I. 2016. Computer simulation of flow and heat transfer in bare tubes at supercritical parameters. International Conference on Nuclear Engineering, Proceedings, ICONE 5, article number V005T15A023, DOI: 10.1115/ICONE24-60390.