ORIGINAL PAPER
Tools for modeling the level of harmonic distortion in power grids and their impact
 
More details
Hide details
1
Vinnytsia National Technical University, Ukraine
 
 
Submission date: 2023-03-30
 
 
Final revision date: 2023-04-21
 
 
Acceptance date: 2023-05-23
 
 
Publication date: 2023-12-19
 
 
Corresponding author
Juliya Malogulko   

Vinnytsia National Technical University, Ukraine
 
 
Polityka Energetyczna – Energy Policy Journal 2023;26(4):19-44
 
KEYWORDS
TOPICS
ABSTRACT
The impact of harmonic distortions on power grids is a major issue in contemporary power networks as a result of the extensive application of non-linear loads. The purpose of this article is to explore the problem of harmonic distortion in power grids and its impact on the elements of the power grid, such as cable lines and transformers. The Schaffner PQS software product was used in this study to model power grids. New techniques for modeling power grids and finding technical solutions that meet the IEEE 519-2014 standard were introduced. The study finds that harmonic distortion can lead to an additional heat load being placed on cable lines and reduces the power available to transformers, which can decrease their rated power. The application of modern software reduces the time and complexity of calculations, and the availability of software solutions for limiting harmonic distortion simplifies the creation of solutions that meet this standard. Using the methods presented in the study, engineering solutions can be improved, the reliability of electrical systems can be increased, and the loss of electrical energy can be reduced. This can enhance efficiency for design engineers and technical specialists involved in the operation of power grids.
METADATA IN OTHER LANGUAGES:
Polish
Narzędzia do modelowania poziomu zniekształceń harmonicznych w sieciach elektroenergetycznych i ich wpływu
jakość energii, harmonia mocy, obliczenia harmoniczne, technologie energooszczędne, odbiorniki nieliniowe
Wpływ zniekształceń harmonicznych na sieci elektroenergetyczne jest ważnym zagadnieniem we współczesnych sieciach elektroenergetycznych w wyniku szerokiego zastosowania obciążeń nieliniowych. Celem niniejszego artykułu jest jest zbadanie problemu zniekształceń harmonicznych w sieciach elektroenergetycznych i ich wpływu na elementy sieci, takie jak linie kablowe i transformatory. Do modelowania sieci elektroenergetycznych wykorzystano oprogramowanie Schaffner PQS. Przedstawiono nowe techniki modelowania sieci elektroenergetycznych i znajdowania rozwiązań technicznych zgodnych ze standardem IEEE 519-2014. Badanie wykazało, że zniekształcenia harmoniczne mogą prowadzić do dodatkowego obciążenia cieplnego linii kablowych i zmniejszać moc dostępną dla transformatorów, co może zmniejszać ich wydajność. Zastosowanie nowoczesnego oprogramowania zmniejsza czas i złożoność obliczeń, a dostępność rozwiązań programowych do ograniczania zniekształceń harmonicznych upraszcza tworzenie rozwiązań spełniających tę normę. Korzystając z metod przedstawionych w badaniu, można ulepszyć rozwiązania inżynieryjne, zwiększyć niezawodność systemów elektrycznych i zmniejszyć straty energii elektrycznej. Może to poprawić efektywność pracy inżynierów-projektantów i specjalistów technicznych zaangażowanych w eksploatację sieci elektroenergetycznych.
REFERENCES (39)
1.
Abbas et al. 2021 – Abbas, A.S., El-Sehiemy, R.A., El-Ela, A.A., Ali, E.S., Mahmoud, K., Lehtonen, M. and Darwish, M.M.F. 2021. Optimal harmonic mitigation in distribution systems with inverter based distributed generation. Applied Sciences 11(2), DOI: 10.3390/app11020774.
 
2.
Alameri, S.A. and Alkaabi, A.K. 2018. Assessment of a nuclear reactor-thermal energy storage coupled system. Transactions of the American Nuclear Society 1(118), pp. 693–695.
 
3.
Ali et al. 2022 – Ali, M., Alkaabi, A.K. and Addad, Y. 2022. Numerical investigation of a vertical triplex-tube latent heat storage/exchanger to achieve flexible operation of nuclear power plants. International Journal of Energy Research 46(3), pp. 2970–2987, DOI: 10.1002/er.7357.
 
4.
Almutairi, M.S. and Hadjiloucas, S. 2019. Harmonics mitigation based on the minimization of non-linearity current in a power system. Designs 3(2), pp. 29–32, DOI: 10.3390/designs3020029.
 
5.
Atamanyuk et al. 2019 – Atamanyuk, I., Shebanin, V., Kondratenko, Y., Volosyuk, Y., Sheptylevskyi, O. and Atamaniuk, V. 2019. Predictive Control of Electrical Equipment Reliability on the Basis of the Non-linear Canonical Model of a Vector Random Sequence. [In:] International Conference on Modern Electrical and Energy Systems, MEES 2019, pp. 130–133. Kremenchuk: Institute of Electrical and Electronics Engineers, DOI: 10.1109/MEES.2019.8896569.
 
6.
Azieva et al. 2021 – Azieva, G. Kerimkhulle, S., Turusbekova, U., Alimagambetova, A. and Niyazbekova, S. 2021. Analysis of access to the electricity transmission network using information technologies in some countries. E3S Web of Conferences 258, DOI: 10.1051/e3sconf/202125811003.
 
7.
Bagdadee et al. 2020 – Bagdadee, A.H., Khan, M.Y.A., Ding, H., Cao, J., Zhang, L. and Ding, Y. 2020. Implement industrial super-dynamic voltage recovery equipment for power quality improvement in the industrial sector. Energy Reports 6(9), pp. 1167–1175, DOI: 10.1016/j.egyr.2020.11.058.
 
8.
Batrakov et al. 2017 – Batrakov, D.O., Antyufeyeva, M.S., Antyufeyev, A.V. and Batrakova, A.G. 2017. Remote sensing of plane-layered media with losses using UWB signals. [In:] 11th International Conference on Antenna Theory and Techniques, ICATT 2017, pp. 370–373. Kyiv: Institute of Electrical and Electronics Engineers, DOI: 10.1109/ICATT.2017.7972666.
 
9.
Bhavani et al. 2022 – Bhavani, R., Prabha, N.R. and Jawahar, M. 2022. An ultra-capacitor integrated dynamic voltage restorer for power quality enhancement in a three-phase distribution system using an adaptive neuro-fuzzy interference system controller. Revue Roumaine des Sciences Techniques Serie Electrotechnique et Energetique 67(4), pp. 383–388.
 
10.
Bondarenko et al. 2018 – Bondarenko, I.N., Gorbenko, Е.А. and Krasnoshchok, V. I. 2018. Microwave switch based on a combined coaxial-waveguide tee for a cavity pulse shaper. Telecommunications and Radio Engineering 77(5), pp. 391–397, DOI: 10.1615/TelecomRadEng.v77.i5.30.
 
11.
Bondarenko, I.N. and Galich, A.V. 2013. Electrodeless lamps based on the resonant irregular microwave structures. 23rd International Crimean Conference Microwave and Telecommunication Technology CriMiCo 2013–2013, Conference Proceedings 1, pp. 1063–1064.
 
12.
Bondarenko, I.N. and Galich, A.V. 2015. Measuring resonant transducers on the basis of microstrip structures. Telecommunications and Radio Engineering 74(9), pp. 807–814, DOI: 10.1615/TelecomRadEng.v74.i9.60.
 
13.
Bondarenko, I.N. and Gorbenko, Е.А. 2018. Forming the powerful microwave pulses using resonator storage. Telecommunications and Radio Engineering 77(15), pp. 1311–1319, DOI: 10.1615/telecomradeng.v77.i15.20.
 
14.
Borisov et al. 1998 – Borisov, Y., Korzhyk, V. and Revo, S. 1998. Electric and magnetic properties of thermal spray coatings with an amorphous structure. Proceedings of the International Thermal Spray Conference 1, pp. 687–691, DOI: 10.31399/asm.cp.itsc1998p0687.
 
15.
Dubey et al. 2022 – Dubey, A.K., Mishra, J.P. and Kumar, A. 2022. Comparative analysis of ROGI based shunt active power filter under current fed and voltage fed type non-linear loading condition. IFAC-PapersOnLine 55(1), pp. 156–161, DOI: 10.1016/j.ifacol.2022.04.026.
 
16.
Duran-Tovar et al. 2013 – Duran-Tovar, I.C., Duarte, O.G. and Pavas, A. 2013. Effects of stationary Power Quality disturbances on lifetime of low voltage conductors. [In:] VII International Symposium on Quality of Electric Power, pp. 1–6, Medellin: SICEL.
 
17.
Electrical Installation Guide 2018. [Online] https://fenix.tecnico.ulisboa.... [Accessed: 2022-06-14].
 
18.
Fialko et al. 1994 – Fialko, N., Prokopov, V.G., Meranova, N.O., Borisov, Y., Korzhik, V.N. and Sherenkovskaya, G.P. 1994. Single particle-substrate thermal interaction during gas-thermal coatings fabrication. Fizika i Khimiya Obrabotki Materialov (1), pp. 70–78.
 
19.
Fuchs, E.F. and Masoum, M.A.S. 2008. Power quality in power systems and electrical machines. Amsterdam: Elsevier.
 
20.
Harmonic mitigation 2009. [Online] https://electronicpowersolutio.... [Accessed: 2022-06-14].
 
21.
IEEE 519-2014 standard 2014. [Online] https://www.elspec-ltd.com/iee... [Accessed: 2022-06-14].
 
22.
Kamenka, A. 2014. Six tough topics about harmonic distortion and power quality indices in electric power systems. Luterbach: The Schaffner Group.
 
23.
Key components for power factor correction in 50 Hz mains 2018. [Online] http://surl.li/eyjrv [Accessed: 2022-06-14].
 
24.
Kharlamov et al. 2015 – Kharlamov, M.Yu., Krivtsun, I.V., Korzhyk, V.N., Ryabovolyk, Y.V. and Demyanov, O.I. 2015. Simulation of Motion, Heating, and Breakup of Molten Metal Droplets in the Plasma Jet at Plasma-Arc Spraying. Journal of Thermal Spray Technology 24(4), pp. 659–670, DOI: 10.1007/s11666-015-0216-4.
 
25.
Korzhyk et al. 2017 – Korzhyk, V.N., Kulak, L.D., Shevchenko, V.E. and Kvasnitskiy, V.V. 2017. New equipment for production of super hard spherical tungsten carbide and other high-melting compounds using the method of plasma atomization of rotating billet. Materials Science Forum 898 MSF, pp. 1485–1497, DOI: 10.4028/www.scientific.net/MSF.898.1485.
 
26.
Kumar et al. 2022 – Kumar, C., Ghosh, P. and Chatterjee, S. 2022. Enhancement of power quality by mitigating of sag and swell problem in power system using DVR. IFAC-PapersOnLine 55(1), pp. 131–137, DOI: 10.1016/j.ifacol.2022.04.022.
 
27.
Malengret, M. and Gaunt, T. 2020. Active currents, power factor, and apparent power for practical power delivery systems. Cape Town: University of Cape Town.
 
28.
Manoj et al. 2022 – Manoj, V., Khampariya, P. and Pilla, R. 2022. A review on techniques for improving power quality: research gaps and emerging trends. Bulletin of Electrical Engineering and Informatics 11(6), pp. 3099–3107, DOI: 10.11591/eei.v11i6.4396.
 
29.
Nassar et al. 2020 – Nassar, S.R., Eisa, A.A., Saleh, A.A., Farahat, M.A. and Abdel-Gawad, A.F. 2020. Evaluating the impact of connected non-linear loads on power quality – A nuclear reactor case study. Journal of Radiation Research and Applied Sciences 13(1), pp. 688–697, DOI: 10.1080/16878507.2020.1828018.
 
30.
Niyazbekova et al. 2022 – Niyazbekova, S., Yessymkhanova, Z., Kerimkhulle, S, Brovkina, N., Annenskaya, N., Semenov, A., Burkaltseva, D., Nurpeisova, A., Maisigova, L. and Varzin, V. 2022. Assessment of Regional and Sectoral Parameters of Energy Supply in the Context of Effective Implementation of Kazakhstan’s Energy Policy. Energies 15(5), DOI: 10.3390/en15051777.
 
31.
O’Connell et al. 2012 – O’Connell, K., Barrett, M., Blackledge, J. and Sung, A. 2012. Cable heating effects due to harmonic distortion in electrical installations. [In:] International Conference of Electrical and Electronics Engineering 2012, pp. 1–8, London: International Association of Engineers.
 
32.
Park et al. 2021 – Park, B., Lee, J., Yoo, H. and Jang, G. 2021. Harmonic mitigation using passive harmonic filters: Case study in a steel mill power system. Energies 14(8), DOI: 10.3390/en14082278.
 
33.
Passive Harmonic Filters 2020. [Online] https://www.schaffner.com/file... [Accessed: 2022-06-14].
 
34.
Rodriguez-Pajaron et al. 2021 – Rodríguez-Pajarón, P., Hernández, A. and Milanović, J.V. 2021. Probabilistic assessment of the impact of electric vehicles and nonlinear loads on power quality in residential networks. International Journal of Electrical Power & Energy Systems 129, DOI: 10.1016/j.ijepes.2021.106807.
 
35.
Schaffner power quality simulator user manual 2016. [Online] https://pqs.schaffner.com/manu.... [Accessed: 2022-06-14].
 
36.
Stavinskii et al. 2019 – Stavinskii, A., Shebanin, V., Avdieieva, E., Tsyganov, A., Stavinskiy, R. and Sadovoy, O. 2019. Dependence of the Indicators of Three-phase Transformers with Planar Plate Magnetic Wires from Variants of Rod Configuration. [In:] International Conference on Modern Electrical and Energy Systems, MEES 2019, pp. 102–105. Kremenchuk: Institute of Electrical and Electronics Engineers, DOI: 10.1109/MEES.2019.8896451.
 
37.
Tu et al. 2019 – Tu, C., Guo, Q., Jiang, F., Wang, H. and Shuai, Z. 2019. A comprehensive study to mitigate voltage sags and phase jumps using a dynamic voltage restorer. IEEE Journal of Emerging and Selected Topics in Power Electronics 8(2), pp. 1490–1502, DOI: 10.1109/JESTPE.2019.2914308.
 
38.
UTE C15-112 standard 2000. [Online] https://arenatecnica.com/en/te.... [Accessed: 2022-06-14].
 
39.
Wu et al. 2019 – Wu, M., Niu, X., Gao, S. and Wu, J. 2019. Power quality assessment for AC/DC hybrid micro grid based on on-site measurements. Energy Procedia 156, pp. 396–400, DOI: 10.1016/j.egypro.2018.11.105.
 
eISSN:2720-569X
ISSN:1429-6675
Journals System - logo
Scroll to top