ORIGINAL PAPER
An assessment of rural households’ perceptions and self-reported attitudes towards the adverse effects of traditional biomass energy use on deforestation, land degradation, agricultural productivity, and food security in Ada’a woreda, Oromia, Ethiopia
More details
Hide details
1
Development and Environmental Management Studies, University of Gondar, Ethiopia
2
College of Agriculture and Natural Resource Management, Bahir Dar University, Ethiopia
Submission date: 2025-04-28
Final revision date: 2025-07-28
Acceptance date: 2025-07-29
Publication date: 2025-12-19
Corresponding author
Ashenafi Bekele Mulatu
Development and environmental management studies, University of Gondar, 6200, Gondar, Ethiopia
Polityka Energetyczna – Energy Policy Journal 2025;28(4):125-150
KEYWORDS
TOPICS
ABSTRACT
This article was aimed at assessing rural households’ perceptions and self-reported attitudes towards the negative effects of traditional biomass energy use on deforestation, land degradation, agricultural productivity, and food security in Ada’a woreda, Oromia regional state, Ethiopia. A mixed approach design was deployed with quantitative and qualitative designs to collect the data using a survey questionnaire, interview guide, and observation checklist. Data was collected from 366 sample households and analyzed using SPSS version 20 and Stata Version 14 software. The study, in the course of analysis, deployed the Mann-Whitney U test, the Kruskal-Wallis H test, and an Ordered Logistic Regression. Gender is revealed as an influencing factor determining perceptions on traditional biomass energy use as a cause of deforestation, land degradation, negative effects on agricultural productivity, and food security. In this regard, males’ perception increases by 66, 88, 61, and 55% respectively than females. Considering the level of education, as the reference category, households with no formal education and primary school had a perception decrease of 80%. The participants with secondary school attendance showed a 70% decrease in the belief that traditional biomass energy use causes deforestation. For land degradation, the participants with no formal education showed a decrease by 62%, and those with primary and secondary school attendance reflected the decrease by 70 and 74%, respectively. Agricultural productivity decreases by 60% in connection to biomass energy use for those with no formal education, by 77 and 63% respectively for primary and secondary school attendees. The effect of biomass energy use was revealed to negatively affect food security, decreasing by 84% for those with no formal education and by 79 and 80% respectively for primary and secondary school attendees. The use of traditional biomass energy is a significant driver of deforestation. Mixed farmer households have experienced a 178% increase in deforestation, while small business households have seen an increase of 111%. This environmental damage has a severe impact on agricultural productivity.
CONFLICT OF INTEREST
The Authors have no conflicts of interest to declare
METADATA IN OTHER LANGUAGES:
Polish
Ocena postrzegania przez członków gospodarstw wiejskich negatywnych skutków tradycyjnego wykorzystania energii z biomasy dla wylesiania, degradacji gleby, wydajności rolnictwa i bezpieczeństwa żywnościowego i postaw wobec tego zjawiska w okręgu (woredzie) Ada’a, Oromia, Etiopia
postawa, Etiopia, gospodarstwo wiejskie, tradycyjna biomasa
Celem niniejszego artykułu była ocena postrzegania przez członków gospodarstw wiejskich negatywnych skutków tradycyjnego wykorzystania energii z biomasy dla wylesiania, degradacji gleby, wydajności rolnictwa i bezpieczeństwa żywnościowego i postaw wobec tego zjawiska w okręgu (woredzie) Ada’a, w regionie Oromia, w Etiopii. Zastosowano podejście mieszane, łączące metody ilościowe i jakościowe, w celu zebrania danych za pomocą kwestionariusza ankietowego, przewodnika do wywiadów i listy kontrolnej do obserwacji. Dane zebrano od 366 gospodarstw domowych i przeanalizowano za pomocą oprogramowania SPSS w wersji 20 oraz Stata w wersji 14. W trakcie analizy w badaniu zastosowano test U Manna-Whitneya, test H Kruskala-Wallisa oraz uporządkowaną regresję logistyczną. Płeć okazuje się czynnikiem wpływającym na postrzeganie tradycyjnego wykorzystania energii z biomasy jako przyczyny wylesiania, degradacji gleby, negatywnego wpływu na wydajność rolnictwa i bezpieczeństwo żywnościowe. W tym zakresie postrzeganie mężczyzn wzrasta odpowiednio o 66, 88, 61 i 55% w porównaniu z kobietami. Biorąc pod uwagę poziom wykształcenia jako kategorię odniesienia, gospodarstwa domowe bez formalnego wykształcenia i z wykształceniem podstawowym odnotowały spadek postrzegania o 80%. Uczestnicy z wykształceniem średnim wykazali 70-procentowy spadek przekonania, że tradycyjne wykorzystanie energii z biomasy powoduje wylesianie. W przypadku degradacji gleby uczestnicy bez formalnego wykształcenia wykazali spadek o 62%, a osoby z wykształceniem podstawowym i średnim odnotowały spadek odpowiednio o 70 i 74%. Wydajność rolnictwa spada o 60% w związku z wykorzystaniem energii z biomasy w przypadku osób bez formalnego wykształcenia, odpowiednio o 77 i 63% w przypadku osób z wykształceniem podstawowym i średnim. Wykazano, że wykorzystanie energii z biomasy ma negatywny wpływ na bezpieczeństwo żywnościowe, zmniejszając je o 84% w przypadku osób bez formalnego wykształcenia oraz odpowiednio o 79 i 80% w przypadku osób z wykształceniem podstawowym i średnim. Wykorzystanie tradycyjnej energii z biomasy jest istotnym czynnikiem powodującym wylesianie. W gospodarstwach rolnych prowadzących działalność mieszaną odnotowano wzrost wylesiania o 178%, natomiast w gospodarstwach prowadzących działalność na małą skalę wzrost ten wyniósł 111%. Szkody środowiskowe mają poważny wpływ na wydajność rolnictwa.
REFERENCES (30)
1.
Amare et al. 2015 – Amare, D., Endeblhatu, A. and Muhabaw, A. 2015. Enhancing Biomass Energy Efficiency in rural Households of Ethiopia. Journal of Energy and Natural Resources 4(2), pp. 27–33, DOI: 10.11648/j.jenr.20150402.11.
2.
Anfinsen, M.H. 2017. Energy & Gender: a social sciences and humanities cross-cutting theme report. Cambridge: Shape Energy.
3.
Assefa, D. 2021. Why is there a quest for modern energy in rural household: implication to mitigate climate change and food insecurity, Northern Ethiopia. Pp. 1–33, DOI: 10.21203/rs.3.rs-1009829/v1.
4.
Benti et al. 2021 – Benti, N.E., Gurmesa, G.S., Argaw, T., Aneseyee, A.B., Gunta, S., Kassahun, G.B., Aga, G.S. and Asfaw, A.A. 2021. The current status, challenges and prospects of using biomass energy in Ethiopia. Biotechnology for Biofuels 14, pp. 1–24, DOI: 10.1186/s13068-021-02060-3.
5.
Dawadi et al. 2021 – Dawadi, S., Shrestha, S. and Giri, R.A. 2021. Mixed-Methods Research: A Discussion on Its Types, Challenges, and Criticisms. Journal of Practical Studies in Education 2(2), pp. 25–36, DOI: 10.46809/jpse.v2i2.20.
6.
Enbakom et al. 2017 – Enbakom, H.W., Feyssa, D.H. and Takele, S. 2017. Impacts of deforestation on the livelihood of smallholder farmers in Arba Minch Zuria Woreda. African Journal of Agricultural Research 12(15), pp. 1293–1305, DOI: 10.5897/AJAR2015.10123.
7.
Felix, M. and Gheewala, S.H. 2011. A Review of Biomass Energy Dependency in Tanzania. Energy Procedia 9(2), pp. 338–343, DOI: 10.1016/j.egypro.2011.09.036.
8.
Field et al. 2007 – Field, C.B., Campbell, J.E. and Lobell, D.B. 2007. Biomass energy: the scale of the potential resource. Trends in Ecology & Evolution 23(2), pp. 65–72, DOI: 10.1016/j.tree.2007.12.001.
9.
Geremew et al. 2014 – Geremew, K., Gedefaw, M., Dagnew, Z. and Jara, D. 2014. Current Level and Correlates of Traditional Cooking Energy Sources Utilisation in Urban Settings in the Context of Climate Change and Health, Northwest Ethiopia: A Case of Debre Markos Town. BioMed Research International 2014(1), pp. 1–11, DOI: 10.1155/2014/572473.
10.
Guta, D.D. 2012. Assessment of Biomass Fuel Resource Potential And Utilisation in Ethiopia: Sourcing Strategies for Renewable Energies. International Journal of Renewable Energy Research 2(1), pp. 131–139.
11.
Hailu, A.D. and Kumsa, D.K. 2020. Ethiopia’s renewable energy potentials and current state. AIMS Energy 9(1), pp. 1–14, DOI: 10.3934/energy.2021001.
12.
Hakizimana et al. 2020 – Hakizimana, E., Wali, U.G., Sandoval, D. and Venant, K. 2020. Environmental Impacts of Biomass Energy Sources in Rwanda. October. Energy and Environmental Engineering 7(3), pp. 62–71, DOI: 10.13189/eee.2020.070302.
13.
Juarros-Basterretxea et al. 2024 – Juarros-Basterretxea, J., Aonso-Diego, G., Postigo, Á., Montes-Álvarez, P., Menéndez-Aller, Á. and García-Cueto, E. 2024. Post-Hoc Tests in One-Way ANOVA: The Case for Normal Distribution. Methodology 20(2), pp. 84–99, DOI: 10.5964/meth.11721.
15.
McClenaghan, E. 2024. The Kruskal – Wallis Test. Discover what the Kruskal–Wallis test is, what it tells us and when it should be used. Technology Networks. [Online:]
https://www.technologynetworks... [Accessed: 2025-11-30].
16.
Morrow et al. 2024 – Morrow, N., Mock, N.B., Gatto, A. and Colantoni, A. 2024. Farm forests, seasonal hunger, and biomass poverty : Evidence of induced intensification from panel data in the Ethiopian Highlands. Ambio 53(3), pp. 435–451, DOI: 10.1007/s13280-023-01954-w.
17.
Mugo, F. and Gathui, T. 2010. Biomass energy use in Kenya. A background paper prepared for the International Institute for Environment and Development (IIED) for an international ESPA workshop on biomass energy, 19–21 October 2010, Parliament House Hotel, Edinburgh. Practical Action, Nairobi, Kenya. [Online:]
https://www.iied.org/sites/def... [Accessed: 2025-11-30].
18.
Namaswa et al. 2022 – Namaswa, T., Githiomi, J., Oduor, N. and Kitheka, E. 2022. Sustainable biomass energy production and utilization in sub-Saharan Africa: A case study of Kenya. Journal of Horticulture and Forestry 14(4), pp. 56–67, DOI: 10.5897/JHF2022.0689.
19.
Okello et al. 2013 – Okello, C., Pindozzi, S., Faugna, S. and Boccia, L. 2013. Development of bioenergy technologies in Uganda: A review of progress. Renewable and Sustainable Energy Reviews 18, pp. 55–63, DOI: 10.1016/j.rser.2012.10.004.
20.
Olsson et al. 2019 – Olsson, L., Barbosa, H., Bhadwal, S., Cowie, A., Delusca, K., Flores-Renteria, D., Hermans, K., Jobbagy, E., Kurz, W., Li, D., Sonwa, D.J. and Stringer, L. 2019. Land Degradation. [In:] Climate Change and Land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems, Shukla, P.R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., van Diemen, R., Ferrat, M., Haughey, E., Luz, S., Neogi, S., Pathak, M., Petzold, J., Portugal Pereira, J., Vyas, P., Huntley, E., Kissick, K., Belkacemi, M., Malley, J. (eds.), pp. 345–436. [Online:]
https://www.ipcc.ch/site/asset... [Accessed: 2025-11-30].
21.
Ostertagová et al. 2016 – Ostertagová, E., Ostertag, O. and Kováč, J. 2016. Methodology and Application of the Kruskal-Wallis Test. Applied Mechanics and Materials 611, pp. 115–120, DOI: 10.4028/www.scientific.net/AMM.611.115.
22.
Rettenmaier et al. 2010 – Rettenmaier, N., Schorb, A., Köppen, S. et al. 2010. Status of Biomass Resource Assessments Version 3. [Online:]
https://www.ifeu.de/fileadmin/... [Accessed: 2025-11-25].
23.
Roomaney, R. and C.B. 2018. Introduction to and application of mixed methods research designs. [In:] Kramer S., Laher S., Fynn A. and Janse van Vuuren H.H. Eds. Online Reading in Research Methods. Psychological Society of South Africa, Johannesburg, pp. 1–24, DOI: 10.17605/OSF.IO/BNPFS.
24.
Shier, R. 2004. Statistics: 2.3 The Mann-Whitney U Test: Carrying out the Mann-Whitney U test. 3–5. [Online:]
https://www.statstutor.ac.uk/r... [Accessed: 2025-11-25].
25.
Słupińska et al. 2022 – Słupińska, K., Wieruszewski, M., Szczypa, P., Kożuch, A. and Adamowicz, K. 2022. Public perception of the use of woody biomass for energy purposes in the evaluation of content and information management on the Internet. Energies 15(19), DOI: 10.3390/en15196888.
26.
Tofu et al. 2022 – Tofu, D.A., Wolka, K. and Woldeamanuel, T. 2022. The impact of alternative energy technology investment on environment and food security in northern Ethiopia. Scientific Reports 12(1), DOI: 10.1038/s41598-022-14521-2.
27.
Tolessa, A. 2023. Heliyon Bioenergy potential from crop residue biomass resources in Ethiopia. Heliyon 9(2), DOI: 10.1016/j.heliyon.2023.e13572.
28.
Venghaus, S. and Hoffmann, J. 2016. The impacts of energy from biomass on the perceived quality of life of the rural population in Brandenburg, Germany. Innovation: The European Journal of Social Science Research 16(3), DOI: 10.1080/13511610.2016.1192991.
29.
Wassie, Y.T. 2020. Effects of access to renewable energy sources and technologies on rural household energy use and the environment in Ethiopia. Doctoral thesis. [Online:]
https://nva.sikt.no/registrati... [Accessed: 2025-11-27].
30.
Yalew, A.W. 2022. Environmental and economic accounting for biomass energy in Ethiopia. Energy, Sustainability and Society 12(1), pp. 1–13, DOI: 10.1186/s13705-022-00356-2.