ORIGINAL PAPER
Optimal operating strategy of a net-zero electricity solar photovoltaic building for a sustainable energy future: a case study in northern Algeria
More details
Hide details
1
Electronic Department, Institute of Science, University Center of Tipaza, Tipaza, Algeria
2
Solar Equipment Development Unit, UDES, Renewable Energy Development Center, CDER, Tipaza, Algeria
3
Electrical Engineering Department, Bouira University, Algeria
4
Electrical Engineering Department, University of Jaén, Linares, Spain
Submission date: 2025-05-29
Final revision date: 2025-08-02
Acceptance date: 2025-08-06
Publication date: 2025-12-19
Corresponding author
Mohammed Laour
Electronic Department, Institute of Science, University Center of Tipaza, Tipaza, Algeria
Polityka Energetyczna – Energy Policy Journal 2025;28(4):151-180
KEYWORDS
TOPICS
ABSTRACT
The vast solar potential of Algeria underscores the need for adopting strategies helping to integrate solar energy in residential buildings to meet growing energy consumption and alleviate the financial pressures caused by energy subsidies. This paper presents a study on the optimal operational strategy and economic analysis for residential buildings aiming to achieve net-zero electricity (NZE) through cost-effective solutions. The methodology involves the development of a high-performance simulation model for NZE solar homes. This model integrates several algorithms designed to optimize the sizing of the photovoltaic (PV) system and implement an efficient energy management strategy. The results show that an optimal PV peak power of 4.218 kWp and a battery capacity of 5.578 kWh lead to a net annual energy surplus of approximately 58 kWh and an electricity cost of 0.1204 USD/kWh, resulting from the investment in the NZE solar home. On average, the system supplies 0.433 kW to the grid during midday peak hours in summer while maintaining full electrical autonomy during evening peak hours. Therefore, the proposed optimal strategy maximizes the use of solar PV energy and minimizes reliance on grid electricity. It also ensures net-zero electricity by accounting for long-term interaction with the grid. Additionally, a detailed cost-benefit analysis reveals potential savings of 7,176.00 USD per household, representing a 68% reduction in government energy subsidies over a 25-year period. These findings offer a practical roadmap for the large-scale deployment of NZE homes in Algeria, helping to reduce both grid stress and the financial burden of energy subsidies, while also contributing to the reduction of CO2 emissions.
CONFLICT OF INTEREST
The Authors have no conflicts of interest to declare
METADATA IN OTHER LANGUAGES:
Polish
Optymalna strategia eksploatacji budynku z zerowym zużyciem energii elektrycznej, zasilanego energią słoneczną, dla zrównoważonej przyszłości energetycznej: studium przypadku z północnej Algierii
budynki solarne NZE, dobór wielkości instalacji fotowoltaicznej, zrównoważona energia, optymalne planowanie, efektywne zarządzanie energią
Ogromny potencjał słoneczny Algierii podkreśla potrzebę przyjęcia strategii pomagających w integracji energii słonecznej w budynkach mieszkalnych, aby sprostać rosnącemu zużyciu energii i złagodzić presję finansową spowodowaną dotacjami energetycznymi. W niniejszym artykule przedstawiono badanie dotyczące optymalnej strategii operacyjnej i analizy ekonomicznej dla budynków mieszkalnych, mające na celu osiągnięcie zerowego zużycia energii elektrycznej netto (NZE) poprzez opłacalne rozwiązania. Metodologia obejmuje opracowanie wysokowydajnego modelu symulacyjnego dla domów słonecznych NZE. Model ten integruje kilka algorytmów zaprojektowanych w celu optymalizacji wymiarów systemu fotowoltaicznego (PV) i wdrożenia efektywnej strategii zarządzania energią. Wyniki pokazują, że optymalna moc szczytowa PV wynosząca 4,218 kWp i pojemność akumulatora wynosząca 5,578 kWh prowadzą do rocznej nadwyżki energii netto wynoszącej około 58 kWh i kosztu energii elektrycznej wynoszącego 0,1204 USD/kWh, wynikającego z inwestycji w dom solarny NZE. Średnio system dostarcza 0,433 kW do sieci w godzinach szczytu w południe w okresie letnim, zachowując pełną autonomię elektryczną w godzinach szczytu wieczornego. W związku z tym proponowana optymalna strategia maksymalizuje wykorzystanie energii słonecznej PV i minimalizuje zależność od energii elektrycznej z sieci. Zapewnia również zerowy bilans energii elektrycznej, uwzględniając długoterminową interakcję z siecią. Ponadto szczegółowa analiza kosztów i korzyści wykazuje potencjalne oszczędności w wysokości 7176,00 USD na gospodarstwo domowe, co stanowi 68-procentową redukcję rządowych dotacji energetycznych w okresie 25 lat. Wyniki te stanowią praktyczny plan działania dla wdrożenia na szeroką skalę domów o zerowym zużyciu energii w Algierii, pomagając zmniejszyć obciążenie sieci energetycznej i finansowe obciążenie związane z dotacjami energetycznymi, a jednocześnie przyczyniając się do redukcji emisji CO2.
REFERENCES (47)
1.
Afaifia et al. 2021 – Afaifia, M., Djiar, K.A., Bich-Ngoc, N. and Teller, J. 2021. An energy consumption model for the Algerian residential building’s stock, based on a triangular approach: Geographic Information System (GIS), regression analysis and hierarchical cluster analysis. Sustainable Cities and Society 74, DOI: 10.1016/j.scs.2021.103191.
2.
Ahmed et al. 2022 – Ahmed, A., Ge, T., Peng, J., Yan, W.C., Tee, B.T. and You, S. 2022. Assessment of the renewable energy generation towards net-zero energy buildings: A review. Energy and Buildings 256, 111755, DOI: 10.1016/j.enbuild.2021.111755.
3.
Aldahmashi, J. and Ma, X. 2024. Real-time energy management in smart homes through deep reinforcement learning. IEEE Access 12, pp. 43155–43172, DOI: 10.1109/ACCESS.2024.3375771.
4.
Alden et al. 2021 – Alden, R.E., Gong, H., Jones, E.S., Ababei, C. and Ionel, D.M. 2021. Artificial intelligence method for the forecast and separation of total and HVAC loads with application to energy management of smart and NZE homes. IEEE Access 9, pp. 160497–160509, DOI: 10.1109/ACCESS.2021.3129172.
5.
Alden et al. 2024 – Alden, R.E., Jones, E.S., Poore, S.B. and Ionel, D.M. 2024. Smart home HVAC digital twin ML meta-model for electric power distribution systems with solar PV and CTA-2045 controls. IEEE Transactions on Industry Applications, DOI: 10.1109/TIA.2024.3458941.
6.
ALGERIA PRESS SERVICE 2021. Electricité: Le tarif moyen appliqué au citoyen inférieur au coût réel. [Online:]
https://www.aps.dz/economie/11... [Accessed: 2025-03-02].
9.
Arif et al. 2023 – Arif, S., Taweekun, J., Ali, H.M., Ahmed, A. and Bhutto, A.A. 2023. Building resilient communities: Techno-economic assessment of standalone off-grid PV powered net zero energy (NZE) villages. Heliyon 9(11), DOI: 10.1016/j.heliyon.2023.e21426.
10.
Awad et al. 2024 – Awad, M., Said, A., Saad, M.H., Farouk, A., Mahmoud, M.M., Alshammari, M.S. et al. 2024. A review of water electrolysis for green hydrogen generation considering PV/wind/hybrid/hydropower/geothermal/tidal and wave/biogas energy systems, economic analysis, and its application. Alexandria Engineering Journal 87, pp. 213–239, DOI: 10.1016/j.aej.2023.12.032.
11.
Baldoni et al. 2021 – Baldoni, E., Coderoni, S., D’Orazio, M., Di Giuseppe, E. and Esposti, R. 2021. From cost-optimal to nearly Zero Energy Buildings’ renovation: Life cycle cost comparisons under alternative macroeconomic scenarios. Journal of Cleaner Production 288, DOI: 10.1016/j.jclepro.2020.125606.
12.
Bao, X. and Zhang, J. 2024. Multi-objective decision optimization design for building energy-saving retrofitting design based on improved grasshopper optimization algorithm. International Journal of Renewable Energy Development 13(6), pp. 1058–1067, DOI: 10.61435/ijred.2024.60483.
13.
Barykina, E. and Hammer, A. 2017. Modeling of photovoltaic module temperature using Faiman model: Sensitivity analysis for different climates. Solar Energy 146, pp. 401–416, DOI: 10.1016/j.solener.2017.03.002.
14.
Benalcazar et al. 2025 – Benalcazar, P., Andrade, C. and Guamán, W. 2025. Prosumer policy options in developing countries: a comparative analysis of feed-in tariffs, net metering, and net billing for residential PV-battery systems. Polityka Energetyczna – Energy Policy Journal 28(1), pp. 77–98, DOI: 10.33223/epj/202801.
15.
Bouraiou et al. 2020 – Bouraiou, A., Necaibia, A., Boutasseta, N., Mekhilef, S., Dabou, R., Ziane, A., Sahouane, N., Attoui, I., Mostefaoui, M. and Touaba, O. 2020. Status of renewable energy potential and utilization in Algeria. Journal of Cleaner Production 246, DOI: 10.1016/j.jclepro.2019.119011.
16.
Brand, L. and Rose, W. 2012. Measure guideline: High efficiency natural gas furnaces. Partnership for Advanced Residential Retrofit. [Online:]
https://www1.eere.energy.gov/b... [Accessed: 2025-04-05].
17.
Camporeale et al. 2021 – Camporeale, C., Del Ciello, R. and Jorizzo, M. 2021. Beyond the hydrocarbon economy: The case of Algeria. [In:] Nyangon, J. and Byrne, J. eds. Sustainable Energy Investment: Technical, Market and Policy Innovations to Address Risk. IntechOpen, p. 165, DOI: 10.5772/intechopen.91033.
18.
Deline et al. 2024 – Deline, C., Jordan, D., Sekulic, B., Parker, J., McDanold, B. and Anderberg, A. 2024. PV Lifetime Project – 2024 NREL Annual Report (No. NREL/TP-5K00-90651). National Renewable Energy Laboratory, Golden, CO, USA. [Online:]
https://www.nrel.gov/docs/fy24... [Accessed: 2025-03-22].
19.
Deymi-Dashtebayaz et al. 2022 – Deymi-Dashtebayaz, M., Baranov, I.V., Nikitin, A., Davoodi, V., Sulin, A., Norani, M. and Nikitina, V. 2022. An investigation of a hybrid wind-solar integrated energy system with heat and power energy storage system in a near-zero energy building – a dynamic study. Energy Conversion and Management 269, DOI: 10.1016/j.enconman.2022.116085.
20.
Durisch et al. 2007 – Durisch, W., Bitnar, B., Mayor, J.C., Kiess, H., Lam, K.H. and Close, J. 2007. Efficiency model for photovoltaic modules and demonstration of its application to energy yield estimation. Solar Energy Materials and Solar Cells 91(1), pp. 79–84, DOI: 10.1016/j.solmat.2006.05.011.
21.
Eksi et al. 2025 – Eksi, M., Akarsu, R.T. and Ozcan, M. 2025. Net-zero energy building transformation: Techno-economic and environmental evaluation in the Mediterranean Region. Environ Dev Sustain, DOI: 10.1007/s10668-025-06389-9.
22.
Elnaggar et al. 2024 - Elnaggar, A.E.M., Sharaf, S., Abedel Rehim, Z.S., Mustafa, H.M.M. and El Zoghby, H.M. 2024. Optimizing COP by RSM and MATLAB model of mini refrigerator based on thermoelectric units driven by solar photovoltaic. Scientific Reports 14(1), DOI: 10.1038/s41598-024-72500-1.
23.
Fan et al. 2021 – Fan, S., Wang, Y., Cao, S., Sun, T. and Liu, P. 2021. A novel method for analyzing the effect of dust accumulation on energy efficiency loss in photovoltaic (PV) system. Energy 234, DOI: 10.1016/j.energy.2021.121112.
24.
Forrousso et al. 2024 – Forrousso, S., Kaitouni, S.I., Mana, A., Wakil, M., Jamil, A., Brigui, J. and Azzouzi, H. 2024. Optimal sizing of off-grid microgrid building-integrated-photovoltaic system with battery for a net zero energy residential building in different climates of Morocco. Results in Engineering 22, DOI: 10.1016/j.rineng.2024.102288.
25.
Ghosh et al. 2022 – Ghosh, S., Roy, J.N. and Chakraborty, C. 2022. A model to determine soiling, shading and thermal losses from PV yield data. Clean Energy 6(2), pp. 1137–1156, DOI: 10.1093/ce/zkac014.
27.
Godin et al. 2021 – Godin, K., Sapinski, J.P. and Dupuis, S. 2021. The transition to net zero energy (NZE) housing: An integrated approach to market, state, and other barriers. Cleaner and Responsible Consumption 3, DOI: 10.1016/j.clrc.2021.100043.
28.
Gong et al. 2020 - Gong, H., Rallabandi, V., Ionel, D.M., Colliver, D., Duerr, S. and Ababei, C. 2020. Dynamic modeling and optimal design for net zero energy houses including hybrid electric and thermal energy storage. IEEE Transactions on Industry Applications 56(4), pp. 4102–4113, DOI: 10.1109/TIA.2020.2986325.
29.
Gulen, S.C. and Zachary, J. 2022. Feasibility of achieving 62% combined cycle efficiency with a 200 MW gas turbine. In Turbo Expo: Power for Land, Sea, and Air 86021, p. V005T09A003, DOI: 10.1115/GT2022-81807.
30.
Hadjout et al. 2023 – Hadjout, D., Sebaa, A., Torres, J.F. and Martínez-Álvarez, F. 2023. Electricity consumption forecasting with outliers handling based on clustering and deep learning with application to the Algerian market. Expert Systems with Applications 227, DOI: 10.1016/j.eswa.2023.120123.
31.
Hasan et al. 2022 – Hasan, K., Yousuf, S. B., Tushar, M.S.H.K., Das, B.K., Das, P. and Islam, M.S. 2022. Effects of different environmental and operational factors on the PV performance: A comprehensive review. Energy Science & Engineering 10(2), pp. 656–675, DOI: 10.1002/ese3.1043.
32.
Ismaeil, E.M. and Sobaih, A.E.E. 2023. Heuristic approach for net-zero energy residential buildings in arid region using dual renewable energy sources. Buildings 13(3), DOI: 10.3390/buildings13030796.
33.
Moghaddasi et al. 2021 – Moghaddasi, H., Culp, C., Vanegas, J. and Ehsani, M. 2021. Net zero energy buildings: Variations, clarifications, and requirements in response to the Paris Agreement. Energies 14(13), DOI: 10.3390/en14133760.
34.
Mohamed, H. and Meriane, Y. 2024. Fossil and renewable energy, conflict, economic growth, and military expenditure: The case of Algeria. Environmental Economics and Policy Studies 26(1), pp. 1–21, DOI: 10.1007/s10018-024-00403-6.
35.
Müller et al. 2024 – Müller, V.P., Eichhammer, W. and van Vuuren, D. 2024. Paving the way: Analysing energy transition pathways and green hydrogen exports in developing countries–The case of Algeria. International Journal of Hydrogen Energy 67, pp. 240–250, DOI: 10.1016/j.ijhydene.2024.04.153.
36.
Nabavi et al. 2021 - Nabavi, S.A., Motlagh, N.H., Zaidan, M.A., Aslani, A. and Zakeri, B. 2021. Deep learning in energy modeling: Application in smart buildings with distributed energy generation. IEEE Access 9, pp. 125439–125461, DOI: 10.1109/ACCESS.2021.3110960.
37.
Niveditha, N. and Singaravel, M.R. 2022. Optimal sizing of hybrid PV–Wind–Battery storage system for Net Zero Energy Buildings to reduce grid burden. Applied Energy 324, DOI: 10.1016/j.apenergy.2022.119713.
38.
Nwokolo et al. 2023 – Nwokolo, S.C., Obiwulu, A.U., Amadi, O. and Ogbulezie, J.C. 2023. Assessing the impact of soiling, tilt angle, and solar radiation on the performance of solar PV systems. Trends in Renewable Energy 9(2), pp. 121–137, DOI: 10.17737/tre.2023.9.2.00156.
39.
Ochs et al. 2024 – Ochs, F., Franzoi, N., Dermentzis, G., Monteleone, W. and Magni, M. 2024. Monitoring and simulation-based optimization of two multi-apartment NZEBs with heat pump, solar thermal and PV. Journal of Building Performance Simulation 17(1), pp. 1–26, DOI: 10.1080/19401493.2023.2227605.
41.
Sauer et al. 2014 – Sauer, K.J., Roessler, T. and Hansen, C.W. 2014. Modeling the irradiance and temperature dependence of photovoltaic modules in PVsyst. IEEE Journal of Photovoltaics 5(1), pp. 152–158, DOI: 10.1109/JPHOTOV.2014.2364133.
42.
Sedaoui, R. 2023. Energy vulnerability and pathway towards sustainable energy systems in the Arab region. The Journal of World Energy Law & Business 16(2), pp. 91–111, DOI: 10.1093/jwelb/jwac039.
43.
Shivanaganna et al. 2024 – Shivanaganna, N., Shivamurthy, K.P. and Boddapati, V. 2024. Optimal strategy for transition into nearly zero energy residential buildings: A case study. Energy 307, DOI: 10.1016/j.energy.2024.132742.
44.
Singla et al. 2016 – Singla, A., Singh, K. and Yadav, V.K. 2016. Environmental effects on performance of solar photovoltaic module. [In:] Proceedings of the 2016 Biennial International Conference on Power and Energy Systems: Towards Sustainable Energy (PESTSE), Bengaluru, India, DOI: 10.1109/PESTSE.2016.7516480.
46.
Theristis et al. 2023 – Theristis, M., Stein, J., Deline, C., Jordan, D., Robinson, C., Sekulic, W., Anderberg, A., Colvin, D.J., Walters, J., Seigneur, H. and King, B.H. 2023. Onymous early-life performance degradation analysis of recent photovoltaic module technologies. Progress in Photovoltaics: Research and Applications 31(2), pp. 149–160, DOI: 10.1002/pip.3615.
47.
Wei, W. and Skye, H.M. 2020. Residential net-zero energy buildings: Review and perspective. Renewable and Sustainable Energy Reviews 142, DOI: 10.1016/j.rser.2021.110859.