ORIGINAL PAPER
Comparative LCOE/LCA and maintenance/service analysis of renewable energy sources in the context of curtailment with the regional diversity in Poland
 
More details
Hide details
1
AGH University of Science and Technology, Kraków, Poland
 
2
The Department of Minerals and Energy Market Research, Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Poland
 
 
Submission date: 2024-08-10
 
 
Final revision date: 2025-02-14
 
 
Acceptance date: 2025-03-04
 
 
Publication date: 2025-06-23
 
 
Corresponding author
Piotr Olczak   

The Department of Minerals and Energy Market Research, Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Poland
 
 
Polityka Energetyczna – Energy Policy Journal 2025;28(2):5-22
 
KEYWORDS
TOPICS
ABSTRACT
In recent years, the increase in the share of unstable energy sources classified as renewable energy sources, wind turbines, and photovoltaic installations in the national (Polish) energy mix has led to the emergence of new challenges. These challenges include what to do with excess energy production in the face of low prices and low storage capacities. The solution used in 2023 and 2024 was the forced shutdown of sources on the scale of the national power system. A gap was noticed in the methodology for assessing which installations (wind turbines or photovoltaics) should be shut down on the scale of one power connection in the so-called cable pooling cooperation formula. In this respect, a decision-making methodology was developed for shutting down generating capacity based on operating costs. Scenarios for the installed capacity of individual sources were defined: photovoltaic installations and wind turbines. Then, an analysis of scenarios of different capacities of individual farms was performed compared to one side of the power connection. It was proven that in most cases of cooperation between photovoltaic farms and wind farms, wind farms should be shut down first in the event of exceeding the capacity from the point of view of one owner for one connection for these farms. The results also voiced the discussion on compensation for installation shutdowns on the scale of the entire power system in Poland. Nevertheless, the estimates in this area have a wide area for in-depth analyses for individual sources, taking into account various conditions, e.g., age of devices, local conditions.
CONFLICT OF INTEREST
The Authors have no conflicts of interest to declare.
METADATA IN OTHER LANGUAGES:
Polish
Analiza porównawcza LCOE/LCA oraz konserwacji/serwisu odnawialnych źródeł energii w kontekście ograniczeń i zróżnicowania regionalnego w Polsce
fotowoltaika, turbiny wiatrowe, koszty obsługi, LCOE, cable pooling
W ostatnich latach wzrost udziału niestabilnych źródeł energii zaliczanych do OZE turbin wiatrowych i instalacji fotowoltaicznych w krajowym (polskim) miksie energetycznym spowodował pojawienie się nowych wyzwań. Wyzwania te obejmują to, co należy zrobić z nadwyżkami w obliczu niskich cen i niewielkich możliwości magazynowania. Rozwiązaniem stosowanym w 2023 i 2024 było przymusowe wyłączanie źródeł w skali krajowego systemu elektroenergetycznego. Zauważono lukę w zakresie metodyki oceny, które instalacje (turbiny wiatrowe czy fotowoltaika) powinny być wyłączane w skali jednego przyłącza energetycznego w formule współdziałania tzw. cable pooling. W tym zakresie opracowano metodykę decyzyjną w zakresie wyłączeń mocy wytwórczych opartą na kosztach działania. Zdefiniowano scenariusze mocy zainstalowanej poszczególnych źródeł: instalacji fotowoltaicznej oraz turbin wiatrowych. Następnie wykonano analizę scenariuszy różnych mocy poszczególnych farm w porównaniu do jednej wielkości przyłącza energetycznego. Dowiedziono że w większości przypadków współdziałań farm fotowoltaicznych i farm wiatrowych to farmy wiatrowe powinny być wyłączane jako pierwsze w przypadku przekroczeń mocy z punktu widzenia jednego właściciela dla jednego przyłącza dla tych farm. Osiągnięte wyniki to także głos w dyskusji w sprawie rekompensat za wyłączenia instalacji w skali całego systemu elektroenergetycznego w Polsce. Nie mniej jednak oszacowania w tym zakresie mają szeroki obszar dla pogłębionych analiz dla poszczególnych źródeł z uwzględnieniem różnych uwarunkowań np. wieku urządzeń, warunków lokalnych.
REFERENCES (45)
1.
Bracquene et al. 2018 – Bracquene, E., Peeters, J.R., Dewulf, W. and Duflou, J.R. 2018. Taking Evolution into Account in a Parametric LCA Model for PV Panels. Procedia CIRP 69, pp. 389–394, DOI: 10.1016/J.PROCIR.2017.11.103.
 
2.
Canales et al. 2020 – Canales, F.A., Jadwiszczak, P., Jurasz, J., Wdowikowski, M., Ciapała, B. and Kaźmierczak, B. 2020. The impact of long-term changes in air temperature on renewable energy in Poland. Science of the Total Environment 729, DOI: 10.1016/j.scitotenv.2020.138965.
 
3.
Chwieduk et al. 2020 – Chwieduk, D., Bujalski, W. and Chwieduk, B. 2020. Possibilities of transition from centralized energy systems to distributed energy sources in large polish cities. Energies 13(22), DOI: 10.3390/en13226007.
 
4.
Ciapała et al. 2021 – Ciapała, B., Jurasz, J., Janowski, M. and Kępińska, B. 2021. Climate factors influencing effective use of geothermal resources in SE Poland: the Lublin trough. Geothermal Energy 9(1), DOI: 10.1186/s40517-021-00184-1.
 
5.
Dzikuć et al. 2021 – Dzikuć, M., Gorączkowska, J., Piwowar, A., Dzikuć, M., Smoleński, R. and Kułyk, P. 2021. The analysis of the innovative potential of the energy sector and low-carbon development: A case study for Poland. Energy Strategy Reviews 38, DOI: 10.1016/j.esr.2021.100769.
 
6.
Gagrica et al. 2016 – Gagrica, O., Marzec, M. and Uhl, T. 2016. Comparison of reliability impacts of two active power curtailment methods for PV micro-inverters. Microelectronics Reliability 58, pp. 133–140, DOI: 10.1016/j.microrel.2015.11.031.
 
7.
Gholami, H. and Røstvik, H.N. 2021. Levelised cost of electricity (Lcoe) of building integrated photovoltaics (bipv) in Europe, rational feed-in tariffs and subsidies. Energies 14(9), DOI: 10.3390/EN14092531/S1.
 
8.
Hrinchenko et al. 2023 – Hrinchenko, H., Koval, V., Shmygol, N., Sydorov, O., Tsimoshynska, O. and Matuszewska, D. 2023. Approaches to Sustainable Energy Management in Ensuring Safety of Power Equipment Operation. Energies 16(18), DOI: 10.3390/en16186488.
 
9.
Igliński et al. 2016 – Igliński, B., Iglińska, A., Koziński, G., Skrzatek, M. and Buczkowski, R. 2016. Wind energy in Poland – History, current state, surveys, Renewable Energy Sources Act, SWOT analysis. Renewable and Sustainable Energy Reviews 64, pp. 19–33, DOI: 10.1016/j.rser.2016.05.081.
 
10.
Ioannou et al. 2018 – Ioannou, A., Angus, A. and Brennan, F. 2018. Parametric CAPEX, OPEX, and LCOE expressions for offshore wind farms based on global deployment parameters. Energy Sources, Part B: Economics, Planning, and Policy 13(5), pp. 281–290, DOI: 10.1080/15567249.2018.1461150.
 
11.
Jordan, D.C. and Kurtz, S.R. 2013. Photovoltaic Degradation Rates – an Analytical Review. Progress in Photovoltaics: Research and Applications 21(1), pp. 12–29, DOI: 10.1002/PIP.1182.
 
12.
Jurasz, J. and Ciapała, B. 2019. A solar- and wind-powered charging station for electric buses based on a backup batteries concept. ICT for Electric Vehicle Integration with the Smart Grid, pp. 317–335, DOI: 10.1049/pbtr016e_ch12.
 
13.
Kim et al. 2021 Kim, H.-G., Kim, J.-Y., Kim, H.-G., Kim, J.-Y. and Castellani, F. 2021. Analysis of Wind Turbine Aging through Operation Data Calibrated by LiDAR Measurement. Energies 14(8), DOI: 10.3390/EN14082319.
 
14.
Koval et al. 2024 – Koval, V., Sribna, Y., Brednyova, V., Kosharska, L., Halushchak, M. and Kopacz, M. 2024. An analysis of the economic and technological potential of solar-driven generation in renewable energy development. Polityka Energetyczna – Energy Policy Journal 27(1), pp. 157–172, DOI: 10.33223/epj/184181.
 
15.
Kudelina et al. 2022 – Kudelina, K., Baraškova, T., Shirokova, V., Vaimann, T. and Rassõlkin, A. 2022. Fault Detecting Accuracy of Mechanical Damages in Rolling Bearings. Machines 10(2), DOI: 10.3390/MACHINES10020086.
 
16.
Leda et al. 2023 – Leda, P., Kruszelnicka, W., Leda, A., Piasecka, I., Kłos, Z., Tomporowski, A., Flizikowski, J. and Opielak, M. 2023. Life Cycle Analysis of a Photovoltaic Power Plant Using the CED Method. Energies 16(24), DOI: 10.3390/EN16248098.
 
17.
Luthander et al. 2016 – Luthander, R., Widén, J., Munkhammar, J. and Lingfors, D. 2016. Self-consumption enhancement and peak shaving of residential photovoltaics using storage and curtailment. Energy 112, pp. 221–231, DOI: 10.1016/j.energy.2016.06.039.
 
18.
Ma et al. 2011 – Ma, Y., Li, G. and Tang, R. 2011. Optical performance of vertical axis three azimuth angles tracked solar panels. Applied Energy 88(5), pp. 1784–1791, DOI: 10.1016/J.APENERGY.2010.12.018.
 
19.
Mahdi et al. 2024 – Mahdi, A., Leahy, H., Alghoul, P. G., Morrison, M., Al Mahdi, H., Leahy, P.G., Alghoul, M. and Morrison, A.P. 2024. A Review of Photovoltaic Module Failure and Degradation Mechanisms: Causes and Detection Techniques. Solar 4(1), pp. 43–82, DOI: 10.3390/SOLAR4010003.
 
20.
Installed capacity (MW) – National renewable energy potential in numbers – Energy Regulatory Office (Moc zainstalowana (MW) – Potencjał krajowy OZE w liczbach – Urząd Regulacji Energetyki ) (n.d.). [Online] https://www.ure.gov.pl/pl/oze/... [Accessed: 2024-06-29] (in Polish).
 
21.
Nieto-Diaz, B.A. 2022. Increased lifetime of Organic Photovoltaics (OPVs) and the impact of degradation, efficiency and costs in the LCOE of Emerging PVs. Durham University.
 
22.
Olczak, P. 2022. Comparison of modeled and measured photovoltaic microinstallation energy productivity. Renewable Energy Focus 43, pp. 246–254, DOI: 10.1016/j.ref.2022.10.003.
 
23.
O’Shaughnessy et al. 2020 – O’Shaughnessy, E., Cruce, J. R. and Xu, K. 2020. Too much of a good thing? Global trends in the curtailment of solar PV. Solar Energy 208, pp. 1068–1077, DOI: 10.1016/J.SOLENER.2020.08.075.
 
24.
Paska, J. and Surma, T. 2016. Wpływ polityki energetycznej Unii Europejskiej na funkcjonowanie przedsiębiorstw energetycznych w Polsce. Rynek Energii 123(2), pp. 17–26.
 
25.
Piwowar, A. and Dzikuć, M. 2019. Development of Renewable Energy Sources in the Context of Threats Resulting from Low-Altitude Emissions in Rural Areas in Poland: A Review. Energies 12(18), DOI: 10.3390/en12183558.
 
26.
Piwowar et al. 2023 – Piwowar, A., Dzikuć, M. and Dzikuć, M. 2023. The potential of wind energy development in Poland in the context of legal and economic changes. Acta Polytechnica Hungarica 20(10), pp. 145–156.
 
27.
Rahman et al. 2023 – Rahman, T., Mansur, A. Al, Hossain Lipu, M.S., Rahman, M.S., Ashique, R.H., Houran, M.A., Elavarasan, R.M. and Hossain, E. 2023. Investigation of Degradation of Solar Photovoltaics: A Review of Aging Factors, Impacts, and Future Directions toward Sustainable Energy Management. Energies 16(9), DOI: 10.3390/EN16093706.
 
28.
Renewable energy source installations – as of 31 December 2023 – Domestic renewable energy potential in numbers – Energy Regulatory Office (Instalacje odnawialnych źródeł energii – stan na 31 grudnia 2023 r. – Potencjał krajowy OZE w liczbach – Urząd Regulacji Energetyki) (n.d.). [Online] https://www.ure.gov.pl/pl/oze/... [Accessed: 2024-06-29] (in Polish).
 
29.
Report „Photovoltaic Market in Poland 2023” – EC BREC Institute of Renewable Energy | Photovoltaics (Raport „Rynek fotowoltaiki w Polsce 2023” – EC BREC Instytut Energetyki Odnawialnej | Fotowoltaika) 2024). [Online] https://ieo.pl/aktualnosci/164... [Accessed: 2024-06-29] (in Polish).
 
30.
Sadowska et al. 2024 – Sadowska, G., Cholewa, T., Nižetić, S., Papaefthimiou, S., Balaras, C. A. and Arici, M. 2024. On real energy model of photovoltaic systems: Creation and validation. Energy Conversion and Management 315, DOI: 10.1016/j.enconman.2024.118810.
 
31.
Sawicka-Chudy et al. 2018 – Sawicka-Chudy, P., Rybak-Wilusz, E., Sibiński, M., Pawełek, R., Cholewa, M. and Kaczor, M. 2018. Analysis of possibilities and demand for energy in a public building using a tracking photovoltaic installation. E3S Web of Conferences 49, DOI: 10.1051/e3sconf/20184900096.
 
32.
Shaik et al. 2023 – Shaik, F., Lingala, S.S. and Veeraboina, P. 2023. Effect of various parameters on the performance of solar PV power plant: a review and the experimental study. Sustainable Energy Research 10(1), pp. 1–23, DOI: 10.1186/S40807-023-00076-X.
 
33.
Skoczkowski et al. 2016 – Skoczkowski, T., Bielecki, S. and Baran, Ł. 2016. Renewable energy sources – problems and perspectives of development in Poland (Odnawialne źródła energii – Problemy i perspektywy rozwoju w Polsce). Przegląd Elektrotechniczny 2016(3), DOI: 10.15199/48.2016.03.44 (in Polish).
 
34.
Skoczkowski et al. 2024 – Skoczkowski, T., Bielecki, S., Wołowicz, M., Sobczak, L., Węglarz, A. and Gilewski, P. 2024. Participation in demand side response. Are individual energy users interested in this? Renewable Energy 232, DOI: 10.1016/j.renene.2024.121104.
 
35.
Sornek, K. 2024. Assessment of the Impact of Direct Water Cooling and Cleaning System Operating Scenarios on PV Panel Performance. Energies 17(17), DOI: 10.3390/en17174392.
 
36.
Sribna et al. 2021 – Sribna, Y., Koval, V., Olczak, P., Bizonych, D., Matuszewska, D. and Shtyrov, O. 2021. Forecasting solar generation in energy systems to accelerate the implementation of sustainable economic development. Polityka Energetyczna – Energy Policy Journal 24(3), pp. 5–28, DOI: 10.33223/epj/141095.
 
37.
Staffell, I. and Green, R. 2014. How does wind farm performance decline with age? Renewable Energy 66, pp. 775–786, DOI: 10.1016/J.RENENE.2013.10.041.
 
38.
Stecuła, K. and Brodny, J. 2017. Renewable energy sources as an opportunity for global economic development. [In:] 17th International Multidisciplinary Scientific GeoConference: SGEM 2017, 27–29 November, 2017, pp. 749–756, DOI: 10.5593/sgem2017H/43/S29.094.
 
39.
Stecuła, K. and Tutak, M. 2018. Causes and effects of low-stack emission in selected regions of Poland. [In:] 18th International Multidisciplinary Scientific GeoConference: Surveying Geology and Mining Ecology Management, SGEM 2018, pp. 357–364, DOI: 10.5593/sgem2018/4.2/S19.047.
 
40.
Turkmen, B.A. and Babuna, F.G. 2024. Life Cycle Environmental Impacts of Wind Turbines: A Path to Sustainability with Challenges. Sustainability 16(13), DOI: 10.3390/SU16135365.
 
41.
Vartiainen et al. 2020 – Vartiainen, E., Masson, G., Breyer, C., Moser, D. and Medina, E.R. 2020. Impact of weighted average cost of capital, capital expenditure, and other parameters on future utility-scale PV levelised cost of electricity. Progress in Photovoltaics: Research and Applications 28(6), pp. 439–453, DOI: 10.1002/pip.3189.
 
42.
Wang et al. 2022 – Wang, W., Xue, Y., He, C. and Zhao, Y. 2022. Review of the Typical Damage and Damage-Detection Methods of Large Wind Turbine Blades. Energies 15(15), DOI: 10.3390/EN15155672.
 
43.
Zarębska, J. and Dzikuć, M. 2013. Determining the environmental benefits of life cycle assessment (LCA) on example of the power industry. Scientific Journals Maritime University of Szczecin 34(106), pp. 97–102.
 
44.
Zhang et al. 2018 – Zhang, J., Cho, H., Luck, R. and Mago, P.J. 2018. Integrated photovoltaic and battery energy storage (PV-BES) systems: An analysis of existing financial incentive policies in the US. Applied Energy 212, pp. 895–908, DOI: 10.1016/j.apenergy.2017.12.091.
 
45.
Żelazna, A. and Gołębiowska, J. 2015. The measures of sustainable development – A study based on the European monitoring of energy-related indicators. Problemy Ekorozwoju.
 
eISSN:2720-569X
ISSN:1429-6675
Journals System - logo
Scroll to top