ORIGINAL PAPER
Control and monitoring of stand-alone hybrid renewable energy systems
More details
Hide details
1
Electrical Engineering Department, Jubail Industrial College, Royal Commission for Jubail & Yanbu, Saudi Arabia
Submission date: 2024-06-29
Final revision date: 2025-02-17
Acceptance date: 2025-03-04
Publication date: 2025-06-23
Corresponding author
Mubarak Alayyat Alanazi
Electrical Engineering Department, Jubail Industrial College, Royal Commission for Jubail & Yanbu, 31961, Jubail Industrial City, Saudi Arabia
Polityka Energetyczna – Energy Policy Journal 2025;28(2):23-54
KEYWORDS
TOPICS
ABSTRACT
Energy storage plays a critical role in stand-alone hybrid renewable energy systems, ensuring a stable and reliable power supply in rural areas disconnected from the electrical grid. This study integrates batteries and a backup diesel generator to maintain continuous energy availability. A computer-based monitoring and control unit is developed to optimize system performance, increase efficiency, and enhance sustainability. The experimental setup consists of photovoltaic (PV) panels, a diesel generator (DG), a battery bank (B), a charge controller, a DC/AC inverter, and a variable electrical load. The control unit, designed using LabView software, prevents battery over-discharge, thereby improving longevity and overall efficiency. It comprises voltage and current sensors connected to data acquisition cards (DAC) linked to a PC. The system features twelve 12 V PV panels, each rated at 75 W, supplying a total of 450 W. The experimental findings indicate that battery capacity declines significantly under high discharge currents, emphasizing the necessity of effective energy management strategies. The control unit continuously monitors system parameters and regulates the operation of the backup generator. When the battery’s state of charge (SOC) drops to 35%, the system automatically disconnects the load and activates the DG, ensuring an uninterrupted power supply while prolonging the battery lifespan. These results highlight the importance of selecting suitable battery sizes and characteristics, considering both cost and load demands, to enhance the performance, reliability, and economic feasibility of hybrid renewable energy systems for off-grid applications.
ACKNOWLEDGEMENTS
I would like to extend my sincere appreciation to Jubail Industrial College for their invaluable support during the course of this research.
CONFLICT OF INTEREST
The Author have no conflicts of interest to declare.
METADATA IN OTHER LANGUAGES:
Polish
Kontrola i monitorowanie autonomicznych hybrydowych systemów energii odnawialnej
energia odnawialna, akumulatory, system kontroli i monitorowania energii, magazynowanie energii
Magazynowanie energii odgrywa kluczową rolę w autonomicznych hybrydowych systemach energii odnawialnej, zapewniając stabilne i niezawodne zasilanie na obszarach wiejskich odłączonych od sieci elektrycznej. W niniejszym artykule zintegrowano akumulatory i zapasowy generator diesla w celu utrzymania ciągłej dostępności energii. Komputerowa jednostka monitorująca i sterująca została opracowana w celu optymalizacji wydajności systemu, zwiększenia efektywności i poprawy zrównoważonego rozwoju. Układ eksperymentalny składa się z paneli fotowoltaicznych (PV), generatora diesla (DG), baterii akumulatorów (B), kontrolera ładowania, falownika DC/AC i zmiennego obciążenia elektrycznego. Jednostka sterująca, zaprojektowana przy użyciu oprogramowania LabView, zapobiega nadmiernemu rozładowaniu akumulatora, poprawiając w ten sposób jego żywotność i ogólną wydajność. Składa się z czujników napięcia i prądu podłączonych do kart akwizycji danych (DAC) połączonych z komputerem PC. System obejmuje dwanaście paneli fotowoltaicznych 12 V, każdy o mocy 75 W, dostarczających łącznie 450 W. Wyniki eksperymentów wskazują, że pojemność baterii znacznie spada przy wysokich prądach rozładowania, co podkreśla konieczność stosowania skutecznych strategii zarządzania energią. Jednostka sterująca stale monitoruje parametry systemu i reguluje działanie generatora zapasowego. Gdy stan naładowania akumulatora (SOC) spada do 35%, system automatycznie odłącza obciążenie i aktywuje DG, zapewniając nieprzerwane zasilanie przy jednoczesnym przedłużeniu żywotności akumulatora. Wyniki te podkreślają znaczenie wyboru odpowiednich rozmiarów i charakterystyk baterii, biorąc pod uwagę zarówno koszty, jak i wymagania dotyczące obciążenia, w celu zwiększenia wydajności, niezawodności i ekonomicznej wykonalności hybrydowych systemów energii odnawialnej do zastosowań poza siecią.
REFERENCES (30)
1.
Abd-Elaziz et al. 2021 – Abd-Elaziz, A.A., Dabour, S.M., Elmorshedy, M.F. and Rashad, E.M. 2021. Modeling and control of stand-alone photovoltaic system based on split-source inverter. [In:] 2021 22nd International Middle East Power Systems Conference (MEPCON), IEEE, pp. 469–476, DOI: 10.1109/MEPCON50283.2021.9686249.
2.
Abdelmjid, S.A.K.A. 2020. Techno-economic Assessement of Hybrid Energy System for a Stand-alone Load in Morocco. International Journal of Renewable Energy Research (IJRER) 10(4), pp. 1774–1782, DOI: 10.20508/ijrer.v10i4.11453.g8067.
3.
Abed et al. 2018 – Abed, K.A., Bahgat, A., Badr, M.A., El-Bayoumi, M. and Ragheb, A.A. 2018. Experimental study of battery state of charge effect on battery charging/discharging performance and battery output power in pv energy system. ARPN Journal of Engineering and Applied Sciences 13(2), pp. 739–745.
4.
Belboul et al. 2024 – Belboul, Z., Toual, B., Bensalem, A., Ghenai, C., Khan, B. and Kamel, S. 2024. Techno-economic optimization for isolated hybrid PV/wind/battery/diesel generator microgrid using improved salp swarm algorithm. Scientific Reports 14(1), DOI: 10.1038/s41598-024-52232-y.
5.
Bilal et al. 2012 – Bilal, B.O., Sambou, V., Kébé, C.M.F., Ndiaye, P.A. and Ndongo, M. 2012. Methodology to Size an Optimal Stand-Alone PV/wind/diesel/battery System Minimizing the Levelized cost of Energy and the CO2 Emissions. Energy Procedia 14, pp. 1636–1647, DOI: 10.1016/j.egypro.2011.12.1145.
6.
Castañeda et al. 2013 – Castañeda, M., Cano, A., Jurado, F., Sánchez, H. and Fernández, L.M. 2013. Sizing optimization, dynamic modeling and energy management strategies of a stand-alone PV/hydrogen/battery-based hybrid system. International journal of hydrogen energy 38(10), pp. 3830–3845, DOI: 10.1016/j.ijhydene.2013.01.080.
7.
Chen, Y. and Zhang, S. 2023. Technical, economic, and environmental assessment of a stand-alone power system based on diesel engine with/without energy storage using an optimization algorithm: A case study in China. Environmental Science and Pollution Research 31, pp. 38585–38602, DOI: 10.1007/s11356-023-31488-3.
8.
Datta et al. 2009 – Datta, M., Senjyu, T., Yona, A., Funabashi, T. and Kim, C.H. 2009. A coordinated control method for leveling PV output power fluctuations of PV–diesel hybrid systems connected to isolated power utility. IEEE Transactions on Energy Conversion 24(1), pp. 153–162, DOI: 10.1109/TEC.2008.2008870.
9.
Datta et al. 2010 – Datta, M.,Senjyu, T., Yona, A., Funabashi, T. and Kim, C.H. 2010. A frequency-control approach by photovoltaic generator in a PV–diesel hybrid power system. IEEE Transactions on Energy Conversion 26(2), pp. 559–571, DOI: 10.1109/TEC.2010.2089688.
10.
Deshmukh et al. 2008 – Deshmukh, M.K. and Deshmukh, S.S. 2008. Modeling of hybrid renewable energy systems. Renewable and sustainable energy reviews 12(1), pp. 235–249, DOI: 10.1016/j.rser.2006.07.011.
11.
Duryea et al. 1999 – Duryea, S., Islam, S. and Lawrance, W. 1999. A battery management system for stand alone photovoltaic energy systems. [In:] Conference Record of the 1999 IEEE Industry Applications Conference. Thirty-Forth IAS Annual Meeting (Cat. No. 99CH36370) 4, pp. 2649–2654, DOI: 10.1109/IAS.1999.799211.
12.
El-Hefnawi, S.H. 1998. Photovoltaic diesel-generator hybrid power system sizing. Renewable Energy 13(1), pp. 33–40, DOI: 10.1016/S0960-1481(97)00074-8.
13.
Farahat et al. 2019 – Farahat, M.A., Abd El-Gawad, Amal F. and Abaza, H.M. 2019. Modeling and Sizing of the Standalone PV with Battery Systems. Journal of Engineering Research and Application 9(8). (Series-V), pp. 18–27, DOI: 10.9790/9622- 0908051827.
14.
Ganthia et al. 2022 – Ganthia, B.P., Dharmaprakash, R., Choudhary, T., Muni, T.V., Al-Ammar, E.A., Seikh, A.H. and Diriba, A. 2022. Simulation model of PV system function in stand-alone mode for grid blackout area. International Journal of Photoenergy, DOI: 10.1155/2022/6202802.
15.
Gevorgian et al. 2022 – Gevorgian, V., Koralewicz, P., Shah, S., Mendiola, E., Wallen, R. and Villegas Pico, H. 2022. Photovoltaic plant and battery energy storage system integration at NREL’s Flatirons campus (No. NREL/TP-5D00-81104). National Renewable Energy Laboratory (NREL), Golden, CO (United States), DOI: 10.2172/1846617.
16.
Habib et al. 2019 – Habib, H.U.R., Wang, S., Elkadeem, M.R. and Elmorshedy, M.F. 2019. Design optimization and model predictive control of a standalone hybrid renewable energy system: A case study on a small residential load in Pakistan. IEEE Access 7, pp. 117369–117390, DOI: 10.1109/ACCESS.2019.2936789.
17.
Hansen et al. 2001 – Hansen, A.D., Sørensen, P.E., Hansen, L.H. and Bindner, H.W. 2001. Models for a stand-alone PV system. Denmark. Forskningscenter Risoe. Risoe-R No. 1219(EN).
18.
Ibrahim, M.I.A.H. 2002. Decentralized hybrid renewable energy systems: control optimization and battery ageing estimation based on fuzzy logic. dissertation. de. Ph. D. Thesis, Kassel University, Germany.
19.
Maleki, A. and Pourfayaz, F. 2015. Sizing of stand-alone photovoltaic/wind/diesel system with battery and fuel cell storage devices by harmony search algorithm. Journal of Energy Storage 2, pp. 30–42, DOI: 10.1016/j.est.2015.05.006.
20.
Mohanty et al. 2015 – Mohanty, D., Dash, S. and Agarwal, M.S. 2015. Design of Battery Energy Storage System for Generation of Solar Power. International Journal of Engineering Research & Technology 4(4), DOI: 10.17577/IJERTV4IS040550.
21.
Nfah et al. 2007 – Nfah, E.M., Ngundam, J.M. and Tchinda, R. 2007. Modelling of solar/diesel/battery hybrid power systems for far-north Cameroon. Renewable Energy 32(5), pp. 832–844, DOI: 10.1016/j.renene.2006.03.010.
22.
Ramli et al. 2015 – Ramli, M.A., Hiendro, A. and Twaha, S. 2015. Economic analysis of PV/diesel hybrid system with flywheel energy storage. Renewable Energy 78, pp. 398–405, DOI: 10.1016/j.renene.2015.01.026.
23.
Saib et al. 2024 – Saib, S., Bayındır, R. and Vadi, S. 2024. Overview: Using Hybrid Energy System for Electricity Production Based on the Optimization Methods. Gazi University Journal of Science 37(2), pp. 745–772, DOI: 10.35378/gujs.1328300.
24.
Shaahid, S.M. and Elhadidy, M.A. 2008. Economic analysis of hybrid photovoltaic–diesel–battery power systems for residential loads in hot regions – A step to clean future. Renewable and sustainable energy reviews 12(2), pp. 488–503, DOI: 10.1016/j.rser.2006.07.013.
25.
Shen, W.X. 2009. Optimally sizing of solar array and battery in a standalone photovoltaic system in Malaysia. Renewable energy 34(1), pp. 348–352, DOI: 10.1016/j.renene.2008.03.015.
26.
Shin et al. 2015 – Shin, Y., Koo, W.Y., Kim, T.H., Jung, S. and Kim, H. 2015. Capacity design and operation planning of a hybrid PV–wind–battery–diesel power generation system in the case of Deokjeok Island. Applied Thermal Engineering 89, pp. 514–525, DOI: 10.1016/j.applthermaleng.2015.06.043.
27.
Thirunavukkarasu et al. 2020 – Thirunavukkarasu, M. and Sawle, Y. 2020. Design, analysis and optimal sizing of standalone PV/diesel/battery hybrid energy system using HOMER. [In:] IOP conference series: materials science and engineering 937(1), IOP Publishing, DOI: 10.1088/1757-899X/937/1/012034.
28.
Yap, W.K. and Karri, V. 2015. An off-grid hybrid PV/diesel model as a planning and design tool, incorporating dynamic and ANN modelling techniques. Renewable Energy 78, pp. 42–50, DOI: 10.1016/j.renene.2014.12.065.
29.
Zhang et al. 2017 – Zhang, J., Huang, L., Shu, J., Wang, H. and Ding, J. 2017. Energy management of PV-diesel-battery hybrid power system for island stand-alone micro-grid. Energy Procedia 105, pp. 2201–2206, DOI: 10.1016/j.egypro.2017.03.622.
30.
Zhou et al. 2010 – Zhou, W., Lou, C., Li, Z., Lu, L. and Yang, H. 2010. Current status of research on optimum sizing of stand-alone hybrid solar–wind power generation systems. Applied energy 87(2), pp. 380–389, DOI: 10.1016/j.apenergy.2009.08.012.