ORIGINAL PAPER
The economic efficiency of photovoltaic energy for energy prosumers
More details
Hide details
1
Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland
2
Faculty of Energy and Fuels, AGH University of Science and Technology, Kraków, Poland
3
Interregional Academy of Personnel Management, Ukraine
4
National University of Water and Environmental Engineering, Ukraine
5
National Academy of Sciences of Ukraine, Ukraine
Submission date: 2022-08-05
Final revision date: 2022-09-29
Acceptance date: 2022-10-02
Publication date: 2022-12-19
Corresponding author
Piotr Olczak
Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland
Polityka Energetyczna – Energy Policy Journal 2022;25(4):95-114
KEYWORDS
TOPICS
ABSTRACT
This article presents an investigation of solar power plants’ economic efficiency in the case of energy prosumers. The economic effect of the development of solar energy, the environmental effect of the transition to green energy and the social effect due to lower electricity costs and investment growth from the use of photovoltaic installations (PVI) have been proven. The level of annual savings in PVI due to changes in production and own consumption of electricity are determined. Through use of factor analysis, the grouping method, the method of generalizing indicators, quantitative data collection for solar PV systems and the matrix method, the two main hypotheses were proven: (i) solar energy production should be stimulated by a sound state tariff policy; (ii) prosumers as players of the electricity market should be considered in the tariff policy. It is revealed that at current interest rates, PVI operational activity is subject to more complex factors, and the main one becomes economic, namely considering the economy of consumers, the level of taxation or grants of PVI activities, as well as productivity and the real state of technical condition of devices. The provided research develops the theoretical and empirical basis for the state policy of solar electricity usage with consideration to the peculiarities of its production and consumption. The process of production and consumption of electricity in PVI is not characterized by uniformity, which is derived from a number of factors, primarily from natural and climatic conditions. It also depends on the technical characteristics of the devices.
METADATA IN OTHER LANGUAGES:
Polish
Efektywność ekonomiczna fotowoltaiki dla prosumentów energii
Polska, fotowoltaika, prosument, energia i ekonomia
W artykule przedstawiono badania efektywności ekonomicznej fotowoltaiki dla przypadku prosumentów. Wykazano ekonomiczny efekt rozwoju energetyki słonecznej, efekt ekologiczny przejścia na zieloną energię oraz efekt społeczny w związku z niższymi kosztami energii elektrycznej i wzrostem skali inwestycji z wykorzystania fotowoltaiki (PVI). Określono poziom rocznych oszczędności w PVI z tytułu zmian wartości produkcji energii (wskutek zmiany wielkości instalacji – simulation) i autokonsumpcji energii elektrycznej. Wykorzystując analizę czynnikową, metodę grupowania, metodę uogólniania wskaźników, ilościowe zbieranie danych dla systemów fotowoltaicznych, udowodniono dwie główne hipotezy: (i) produkcja energii słonecznej powinna być stymulowana przez politykę taryfową państwa; (ii) prosumenci jako uczestnicy rynku energii elektrycznej powinni być uwzględniani w polityce taryfowej. Okazuje się, że przy obecnych stopach procentowych działalność PVI podlega bardziej złożonym czynnikom, a ważny staje się czynnik ekonomiczny, a mianowicie uwzględniając wypłacalność konsumentów, poziom opodatkowania działalności PVI, a także produktywność i rzeczywisty stan techniczny instalacji. Przeprowadzone badania rozwijają teoretyczne i empiryczne podstawy polityki państwa w zakresie wykorzystania energii słonecznej z uwzględnieniem specyfiki jej wytwarzania i zużycia. Proces produkcji i zużycia energii elektrycznej w instalacji nie charakteryzuje się jednorodnością, co jest pochodną szeregu czynników, a mianowicie – przede wszystkim warunków naturalnych i klimatycznych. Zależy to również od parametrów technicznych urządzeń.
REFERENCES (35)
1.
Byrne et al. 2017 – Byrne, J., Taminiau, J., Kim, K.N., Lee, J. and Seo, J. 2017. Multivariate analysis of solar city economics: impact of energy prices, policy, finance, and cost on urban photovoltaic power plant implementation. Wiley Interdisciplinary Reviews: Energy and Environment, e241, DOI: 10.1002/wene.241.
2.
Cader et al. 2021 – Cader, J., Olczak, P. and Koneczna, R. 2021. Regional dependencies of interest in the “My Electricity” photovoltaic subsidy program in Poland. Polityka Energetyczna – Energy Policy Journal 24(2), pp. 97–116, DOI: 10.33223/epj/133473.
3.
Chang et al. 2003 – Chang, J., Leung, D.Y.C., Wu, C.Z. and Yuan, Z.H. 2003. A review on the energy production, consumption, and prospect of renewable energy in China. Renewable and Sustainable Energy Reviews 7(5), pp. 453–468, DOI: 10.1016/S1364-0321(03)00065-0.
4.
Chen et al. 2019 – Chen, J., Yu, J., Song, M. and Valdmanis, V. 2019. Factor decomposition and prediction of solar energy consumption in the United States. Journal of Cleaner Production 234, pp. 1210–1220, DOI: 10.1016/j.jclepro.2019.06.173.
5.
Chesser et al. 2018 – Chesser, M., Hanly, J., Cassells, D. and Apergis, N. 2018. The positive feedback cycle in the electricity market: Residential solar PV adoption, electricity demand and prices. Energy Policy 122, pp. 36–44, DOI: 10.1016/j.enpol.2018.07.032.
6.
Colmenar-Santos et al. 2021 – Colmenar-Santos, A., Muñoz-Gómez, A.-M., López-Rey, Á. and Rosales-Asensio, E. 2021. Chapter 5 – Strategy to support renewable energy sources in Europe. In A.T. Azar and N.A.B.T.-D. Kamal, Analysis and Applications of Renewable Energy Systems (Eds.), Advances in Nonlinear Dynamics and Chaos (ANDC), pp. 103–120, DOI: 10.1016/B978-0-12-824555-2.00008-3.
7.
Fikru et al. 2022 – Fikru, M.G., Atherton, J. and Canfield, C.I. 2022. Cost-reflective dynamic electricity pricing for prosumers. The Electricity Journal 35(1), DOI: 10.1016/j.tej.2022.107075.
8.
Gürtler, M. and Paulsen, T. 2018. The effect of wind and solar power forecasts on day-ahead and intraday electricity prices in Germany. Energy Economics 75, pp. 150–162, DOI: 10.1016/j.eneco.2018.07.006.
9.
Hepbasli, A. and Canakci, C. 2003. Geothermal district heating applications in Turkey: A case study of Izmir-Balcova. Energy Conversion and Management 44, pp. 1285–1301, DOI: 10.1016/S0196-8904(02)00121-8.
11.
IRENA 2022b. Renewable Capacity Statistics 2022.
12.
Jasiński et al. 2021 – Jasiński, J., Kozakiewicz, M. and Sołtysik, M. 2021. Determinants of Energy Cooperatives’ Development in Rural Areas – Evidence from Poland. Energies 14(2), DOI: 10.3390/en14020319.
13.
Jenner et al. 2021 – Jenner, S., Chan, G., Frankenberger, R. and Gabel, M. 2012. What Drives States to Support Renewable Energy? The Energy Journal 33(2), pp. 1–12. [Online]
http://www.jstor.org/stable/23... [Accessed: 2022-09-22].
14.
Jiang et al. 2020 – Jiang, Y., Zhou, K., Lu, X. and Yang, S. 2020. Electricity trading pricing among prosumers with game theory-based model in energy blockchain environment. Applied Energy 271, DOI: 10.1016/j.apenergy.2020.115239.
15.
Klaiß et al. 1995 – Klaiß, H., Köhne, R., Nitsch, J. and Sprengel, U. 1995. Solar thermal power plants for solar countries — Technology, economics and market potential. Applied Energy 52(2), pp. 165–183, DOI: 10.1016/0306-2619(95)00036-R.
16.
Komorowska et al. 2022 – Komorowska, A., Olczak, P., Hanc, E. and Kamiński, J. 2022. An analysis of the competitiveness of hydrogen storage and Li-ion batteries based on price arbitrage in the day-ahead market. International Journal of Hydrogen Energy 47(66), pp. 28556-28572, DOI: 10.1016/j.ijhydene.2022.06.160.
17.
Lund, H. 2007. Renewable energy strategies for sustainable development. Energy 32(6), pp. 912–919, DOI: 10.1016/j.energy.2006.10.017.
18.
Milčiuvienė et al. 2019 – Milčiuvienė, S., Kiršienė, J., Doheijo, E., Urbonas, R. and Milčius, D. 2019. The Role of Renewable Energy Prosumers in Implementing Energy Justice Theory. Sustainability, 11(19), DOI: 10.3390/su11195286.
19.
Mokri, A., Aal Ali, M. and Emziane, M. 2013. Solar energy in the United Arab Emirates: A review. Renewable and Sustainable Energy Reviews 28, pp. 340–375, DOI: 10.1016/j.rser.2013.07.038.
20.
Numminen et al. 2018 – Numminen, S., Yoon, S., Urpelainen, J. and Lund, P. 2018. An evaluation of dynamic electricity pricing for solar micro-grids in rural India. Energy Strategy Reviews 21, pp. 130–136, DOI: 10.1016/j.esr.2018.05.007.
21.
Olczak, P. and Komorowska, A. 2021. An adjustable mounting rack or an additional PV panel? Cost and environmental analysis of a photovoltaic installation on a household: A case study in Poland. Sustainable Energy Technologies and Assessments 47, DOI: 10.1016/J.SETA.2021.101496.
22.
Olczak et al. 2021 – Olczak, P., Żelazna, A., Matuszewska, D. and Olek, M. 2021. The “My Electricity” Program as One of the Ways to Reduce CO2 Emissions in Poland. Energies 14(22), DOI: 10.3390/en14227679.
23.
Olek et al. 2016 – Olek, M., Olczak, P. and Kryzia, D. 2016. The sizes of Flat Plate and Evacuated Tube Collectors with Heat Pipe area as a function of the share of solar system in the heat demand. E3S Web of Conferences 10, DOI: 10.1051/e3sconf/20161000139.
24.
Petrichenko et al. 2022 – Petrichenko, L., Sauhats, A., Diahovchenko, I. and Segeda, I. 2022. Economic Viability of Energy Communities versus Distributed Prosumers. Sustainability 14(8), DOI: 10.3390/su14084634.
25.
Roux et al. 2016 – Roux, C., Schalbart, P. and Peuportier, B. 2016. Accounting for temporal variation of electricity production and consumption in the LCA of an energy-efficient house. Journal of Cleaner Production 113, pp. 532–540, DOI: 10.1016/j.jclepro.2015.11.052.
26.
Rukijkanpanich, J. and Mingmongkol, M. 2019. Enhancing performance of maintenance in solar power plant. Journal of Quality in Maintenance Engineering (ahead-of-print) 25(4), pp. 575–591, DOI: 10.1108/JQME-11-2018-0098.
27.
Russo et al. 2022 – Russo, M., Kraft, E., Bertsch, V. and Keles, D. 2022. Short-term risk management of electricity retailers under rising shares of decentralized solar generation. Energy Economics 109, DOI: 10.1016/j.eneco.2022.105956.
28.
Sanz-Casado et al. 2014 – Sanz-Casado, E., Lascurain-Sánchez, M. L., Serrano-Lopez, A. E., Larsen, B. and Ingwersen, P. 2014. Production, consumption and research on solar energy: The Spanish and German case. Renewable Energy 68, pp. 733–744, DOI: 10.1016/j.renene.2014.03.013.
29.
Sawicka-Chudy et al. 2018 – Sawicka-Chudy, P., Rybak-Wilusz, E., Sibiński, M, Pawelek, R., Cholewa, M. and Kaczor, M. 2018. Analysis of possibilities and demand for energy in a public building using a tracking photovoltaic installation. E3S Web of Conferences 49, DOI: 10.1051/e3sconf/20184900096.
30.
Sturmberg et al. 2021 – Sturmberg, B.C.P., Shaw, M.E., Mediwaththe, C.P., Ransan-Cooper, H., Weise, B., Thomas, M. and Blackhall, L. 2021. A mutually beneficial approach to electricity network pricing in the presence of large amounts of solar power and community-scale energy storage. Energy Policy 159, DOI: 10.1016/j.enpol.2021.112599.
31.
Tongsopit et al. 2019 – Tongsopit, S., Junlakarn, S., Wibulpolprasert, W., Chaianong, A., Kokchang, P. and Hoang, N.V. 2019. The economics of solar PV self-consumption in Thailand. Renewable Energy 138, pp. 395–408, DOI: 10.1016/J.RENENE.2019.01.087.
32.
Ulucak et al. 2021 – Ulucak, O., Kocak, E., Bayer, O., Beldek, U., Özgirgin, E. and Aylı, E. 2021. Developing and Implementation of an Optimization Technique for Solar Chimney Power Plant With Machine Learning. Journal of Energy Resources Technology 143, pp. 1–22, DOI: 10.1115/1.4050049.
33.
Yu et al. 2022 – Yu, J., Tang, Y. M., Chau, K. Y., Nazar, R., Ali, S. and Iqbal, W. 2022. Role of solar-based renewable energy in mitigating CO2 emissions: Evidence from quantile-on-quantile estimation. Renewable Energy 182, pp. 216–226, DOI: 10.1016/j.renene.2021.10.002.
34.
Zhang et al. 2021 – Zhang, Y.S., Dong, D., Xiao, Y., Wang, T. and Wang, J. 2021. Current status and trends in energy production, consumption, and storage under carbon neutrality conditions in China. Chinese Science Bulletin-Chinese 66(34), pp. 4466–4476.
35.
Zhu et al. 2021 – Zhu, L., Fang, W., Rahman, S.U. and Khan, A.I. 2021. How solar-based renewable energy contributes to CO2 emissions abatement? Sustainable environment policy implications for solar industry. Energy & Environment, DOI: 10.1177/0958305X211061886.