ORIGINAL PAPER
Computer simulation and management of partial discharges in XLPE insulation of high-voltage power cable
More details
Hide details
1
Institute of Electrodynamics of the National Academy of Sciences of Ukraine, Ukraine
2
Management Department, AGH University of Krakow, Poland
Submission date: 2025-06-14
Final revision date: 2025-07-08
Acceptance date: 2025-07-15
Publication date: 2025-09-30
Corresponding author
Yuliya Pazynich
Management Department, AGH University of Krakow, Krakow, Poland
Polityka Energetyczna – Energy Policy Journal 2025;28(3):5-26
KEYWORDS
TOPICS
ABSTRACT
This study aims to investigate partial discharges (PD) occurring in micro-sized voids within the polymer insulation of high-voltage power cables, which serve as critical early indicators of internal insulation faults and potential failures. Accurate analysis and modeling of these PD phenomena are essential for improving the reliability and safety of power transmission systems. In this research, a detailed simulation of partial discharge behavior was conducted using MATLAB/Simulink software, focusing on the influence of void size, as well as the amplitude and frequency of the applied sinusoidal voltage, on PD characteristics. The simulation model incorporates key physical parameters to represent the micro-void environment and electrical stress conditions accurately. Key findings demonstrate that as the diameter of the gas-filled void increases, both the number of discharges within each voltage cycle and the charge transferred during individual partial discharges increase significantly.
Additionally, an increase in the amplitude of the applied voltage results in a greater number of discharges per period, indicating heightened insulation stress. The study also reveals a proportional relationship between voltage frequency and the average partial discharge current, where higher frequencies lead to increased PD activity. A novel aspect of this work is the ability to correlate partial discharge measurements obtained under high-frequency voltage conditions with those at the industrial standard frequency of 50 Hz. This correlation facilitates more accurate interpretation and prediction of insulation degradation and remaining service life in polymer-insulated cables and other high-voltage energy facilities.
FUNDING
This work was carried out within the project “Development of the theory and methods of the effect of non-sinusoidal voltages and currents and electrothermodynamic processes on the reliability and resource of modern power cable lines” (state registration No. 0123U100693).
CONFLICT OF INTEREST
The Authors have no conflicts of interest to declare.
METADATA IN OTHER LANGUAGES:
Polish
Symulacja komputerowa i zarządzanie wyładowaniami częściowymi w izolacji XLPE kabli wysokiego napięcia
symulacja komputerowa, zarządzanie wyładowaniami częściowymi, kable energetyczne wysokiego napięcia
Celem niniejszego artykułu jest zbadanie wyładowań częściowych (PD) występujących w mikroskopijnych pustkach w izolacji polimerowej kabli wysokiego napięcia, które stanowią kluczowe wczesne wskaźniki wewnętrznych uszkodzeń izolacji i potencjalnych awarii. Dokładna analiza i modelowanie tych zjawisk PD ma zasadnicze znaczenie dla poprawy niezawodności i bezpieczeństwa systemów przesyłu energii elektrycznej. W ramach niniejszych prac badawczych przeprowadzono szczegółową symulację zachowania wyładowań częściowych przy użyciu oprogramowania MATLAB/Simulink, koncentrując się na wpływie wielkości pustki, a także amplitudy i częstotliwości przyłożonego napięcia sinusoidalnego na charakterystykę PD. Model symulacyjny uwzględnia kluczowe parametry fizyczne, aby dokładnie odzwierciedlić środowisko mikropustki i warunki obciążenia elektrycznego. Kluczowe wyniki pokazują, że wraz ze wzrostem średnicy pustej przestrzeni wypełnionej gazem znacznie wzrasta zarówno liczba wyładowań w każdym cyklu napięcia, jak i ładunek przenoszony podczas poszczególnych wyładowań częściowych.
Ponadto wzrost amplitudy przyłożonego napięcia powoduje większą liczbę wyładowań w jednym okresie, co wskazuje na zwiększone naprężenie izolacji. W artykule wskazano również proporcjonalną zależność między częstotliwością napięcia a średnim prądem wyładowań częściowych, gdzie wyższe częstotliwości prowadzą do zwiększonej aktywności wyładowań częściowych. Nowatorskim aspektem tej pracy jest możliwość skorelowania pomiarów wyładowań częściowych uzyskanych w warunkach napięcia o wysokiej częstotliwości z pomiarami wykonanymi przy standardowej częstotliwości przemysłowej 50 Hz. Korelacja ta ułatwia dokładniejszą interpretację i prognozowanie degradacji izolacji oraz pozostałego okresu eksploatacji kabli z izolacją polimerową i innych obiektów energetycznych wysokiego napięcia.
REFERENCES (41)
1.
Aakre, T.G. and Ildstad, E. 2020. PD-Activity in Generator Stator Bar insulation versus Voltage Frequency and Temperature. 2020 IEEE 3rd International Conference on Dielectrics (ICD), pp. 870–873, DOI: 10.1109/icd46958.2020.9341874.
2.
Albarracin et al. 2020 – Albarracin, R., Rodriguez-Serna, J.M. and Masud, A.A. 2020. Finite-element-analysis models for numerical simulation of partial discharges in spherical cavities within solid dielectrics: a review and a novel method. High Voltage 5, pp. 556–568, DOI: 10.1049/hve.2019.039.
3.
Beshta et al. 2023 – Beshta, O., Cichoń, D., Beshta, O., Khalaimov, T. and Cabana, E.C. 2023. Analysis of the Use of Rational Electric Vehicle Battery Design as an Example of the Introduction of the Fit for 55 Package in the Real Estate Market. Energies 16(24), DOI: 10.3390/en16247927.
4.
Beshta et al. 2024 – Beshta, O.S., Beshta, O.O., Khudolii, S.S., Khalaimov, T.O. and Fedoreiko, V.S. 2024. Electric vehicle energy consumption taking into account the route topology. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 2, pp. 104–112, DOI: 10.33271/nvngu/2024-2/104.
5.
Bleaney, B.I. and Bleaney, B. 1965. Electricity and magnetism. Clarendon Press, Oxford, UK, 778 p.
6.
Densley, J. 2001. Ageing mechanisms and diagnostics for power cables – an overview. IEEE Electrical Insulation Magazine 17(1), pp. 14–22, DOI: 10.1109/57.901613.
7.
Design of cable lines with a voltage of up to 330 kV 2017. Standard (with changes). SOU-N MEV 40. 1-37471933-49:2011. Kyiv: SE NEC Ukrenergo, 139 p.
8.
Dychkovskyi et al. 2024 – Dychkovskyi, R., Dyczko, A. and Borojević Šoštarić, S. 2024. Foreword: Physical and Chemical Geotechnologies – Innovations in Mining and Energy. E3S Web of Conferences, 567, DOI: 10.1051/e3sconf/202456700001.
9.
Eigner, A. and Rethmeier, K. 2016. An overview on the current status of partial discharge measurements on AC high voltage cable accessories. IEEE Electrical Insulation Magazine 32(2), pp. 48–55, DOI: 10.1109/MEI.2016.7414231.
10.
Fedoreiko et al. 2017 – Fedoreiko, V.S., Zahorodnii, R.I., Lutsyk, I.B. and Rutylo, M.I. 2017. Modeling of block of electricity generation of cogeneration system for heat generator. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 2, pp. 87–92.
11.
Fedoreiko et al. 2025 – Fedoreiko, V., Zahorodnii, R., Lutsyk, I., Rutylo, M. and Bureha, N. 2025. Modelling of resource-saving control modes of a bioheat generator using neuro-fuzzy controllers. IOP Conference Series: Earth and Environmental Science 1457(1), DOI: 10.1088/1755-1315/1457/1/012005.
12.
Fifield, L.S. and Correa, M. 2017. Analysis of simultaneous thermal/gamma radiation aging of cross-linked polyethylene (XLPE) insulation – interim status report. Office of Scientific and Technical Information (OSTI). DOI: 10.2172/1400348.
13.
Golovchenko et al. 2020 – Golovchenko, A., Dychkovskyi, R., Pazynich, Y., Edgar, C.C., Howaniec, N., Jura, B. and Smolinski, A. 2020. Some Aspects of the Control for the Radial Distribution of Burden Material and Gas Flow in the Blast Furnace. Energies 13(4), DOI: 10.3390/en13040923.
14.
Henry, E. 1952. Dielectric breakdown of solids (Whitehead, S.). Journal of Chemical Education 29(2), 108 p.
15.
Illias et al. 2012 – Illias, H., Jian, L.T., Bakar, A.H. and Mokhlis, H. 2012. Partial discharge simulation under various applied voltage waveforms. IEEE International Conference on Power and Energy (PECon), pp. 967–972, DOI: 10.1109/PECon.2012.6450358.
16.
Kolb et al. 2020 – Kolb, A., Pazynich, Y., Mirek, A. and Petinova, O. 2020. Influence of voltage reserve on the parameters of parallel power active compensators in mining. E3S Web of Conferences 201, DOI: 10.1051/e3sconf/202020101024.
17.
Kuchinskii, G.S. 1979. Partial discharges in high-voltage structures. Energiya, 224 p.
18.
Kumar et al. 2024 – Kumar, H., Shafiq, M., Kauhaniemi, K. and Elmusrati, M.A. 2024. Review on the classification of partial discharges in medium-voltage cables: detection, feature extraction, artificial intelligence-based classification, and optimization techniques. Energies 17, DOI: 10.3390/en17051142.
19.
Lee et al. 2019 – Lee, S.B., Naeini, A., Jayaram, S., Stone, G.C. and Sasic, M. 2019. Impulse Voltage-based Test Method for Identifying the Stator Insulation Component with PD Activity for Low Voltage AC Motors. 2019 IEEE Electrical Insulation Conference (EIC), pp. 392–395, DOI: 10.1109/eic43217.2019.9046584.
20.
Lewicka, B. and Lewicka, D. 2019. Environmental risk management in the context of environmental management systems for agriculture based on the ISO 14001:2015 standard. Acta Innovations 33, pp. 63–72, DOI: 10.32933/actainnovations.33.6.
21.
Magdziarczyk et al. 2024 – Magdziarczyk, M., Chmiela, A., Dychkovskyi, R. and Smoliński, A. 2024. The Cost Reduction Analysis of Green Hydrogen Production from Coal Mine Underground Water for Circular Economy. Energies 17(10), DOI: 10.3390/en17102289.
22.
Musa et al. 2023 – Musa, U., Mati, A.A. and Mas’ud, A.A. 2023. An improved technique for quantifying PD activity in cross-linked polyethylene (XLPE) power cables. Measurement 211, DOI: 10.1016/j.measurement.2023.112633.
23.
Myronova et al. 2025 – Myronova, I., Kovrov, O., Dudek, M., Voronkova, Y. and Kononenko, M. 2025. Environmental assessment of the impact of iron ore mine emissions on biological indicators of winter wheat. IOP Conference Series: Earth and Environmental Science 1457(1), DOI: 10.1088/1755-1315/1457/1/012004.
24.
Niemeyer, L. 1995. A generalized approach to partial discharge modeling. IEEE Transactions on Dielectrics and Electrical Insulation 2, pp. 510–528, DOI: 10.1109/94.407017.
25.
Nikolsky et al. 2020 – Nikolsky, V., Kuzyayev, I., Dychkovskyi, R., Alieksandrov, O., Yaris, V., Ptitsyn, S., Tikhaya, L., Howaniec, N., Bak, A., Siudyga, T., Jura, B., Cabana, E., Szymanek, A. and Smoliński, A. 2020. A Study of Heat Exchange Processes within the Channels of Disk Pulse Devices. Energies 13(13), DOI: 10.3390/en13133492.
26.
Nikolsky et al. 2022 – Nikolsky, V., Dychkovskyi, R., Cabana, E.C., Howaniec, N., Jura, B., Widera, K., and Smoliński, A. 2022. The Hydrodynamics of Translational−Rotational Motion of Incompressible Gas Flow within the Working Space of a Vortex Heat Generator. Energies 15(4), DOI: 10.3390/en15041431.
27.
Pattanadech et al. 2023 – Pattanadech, N., Haller, R., Kornhuber, S. and Muhr, M. 2023. Partial discharges. Detection, identification, and localization. Wiley, 339 p.
28.
Pazynich et al. 2024 – Pazynich, Y., Kolb, A., Korcyl, A., Buketov, V. and Petinova, O. 2024. Mathematical model and characteristics of dynamic modes for managing the asynchronous motors at voltage asymmetry. Polityka Energetyczna – Energy Policy Journal 27(4), pp. 39–58, DOI: 10.33223/epj/191779.
29.
Polyanska et al. 2024 – Polyanska, A., Pazynich, Y., Petinova, O., Nesterova, O., Mykytiuk, N. and Bodnar, G. 2024. Formation of a Culture of Frugal Energy Consumption in the Context of Social Security. The Journal of the International Committee for the History of Technology 29(2), pp. 60–87, DOI: 10.11590/icon.2024.2.03.
30.
Richert et al. 2024 – Richert, M., Dudek, M. and Sala, D. 2024. Surface Quality as a Factor Affecting the Functionality of Products Manufactured with Metal and 3D Printing Technologies. Materials 17(21), DOI: 10.3390/ma17215371.
31.
Seheda et al. 2024 – Seheda, M.S., Beshta, O.S., Gogolyuk, P.F., Blyznak, Yu.V., Dychkovskyi, R.D. and Smoliński, A. 2024. Mathematical model for the management of the wave processes in three-winding transformers with consideration of the main magnetic flux in mining industry. Journal of Sustainable Mining 23(1), pp. 20–39, DOI: 10.46873/2300-3960.1402.
32.
Shahsavarian, T. and Shahrtash, S.M. 2015. Modelling of aged cavities for partial discharge in power cable insulation. IET Science, Measurement & Technology 9(6), pp. 661–670, DOI: 10.1049/iet-smt.2014.0222.
33.
Shahsavarian et al. 2021 – Shahsavarian, T., Pan, Y., Zhang, Z., Pan, C., Naderiallaf, H., Guo, J., Li, C. and Cao, Y. 2021. Review of knowledge-based defect identification via PRPD patterns in high voltage apparatus. IEEE Access 9, pp. 77705–77728, DOI: 10.1109/ACCESS.2021.3082858.
34.
Shcherba et al. 2024 – Shcherba, A.A., Vinnychenko, D.V. and Suprunovska, N.I. 2024. Scientific concept for the creation of high-voltage electrical systems of a resonance type with high-speed control and parametric stabilization of load modes. Tekhnichna Elektrodynamika (2), pp. 30–41, DOI: 10.15407/techned2024.02.030.
35.
Shcherba et al. 2024 – Shcherba, A.А., Podoltsev, O.D., Suprunovska, N.І. and Vinnychenko, D.V. 2024. Determing and analysing performance characteristics of high-voltage electrotechnical systems based on a series resonant LC-circuit with a high Q-factor. Tekhnichna Elektrodynamika 1, pp. 3–11, DOI: 10.15407/techned2024.01.003.
36.
Sobolev et al. 2025 – Sobolev, V., Gubenko, S., Khomenko, O., Kononenko, M., Dychkovskyi, R. and Smolinski, A. 2025. Physical and chemical conditions for the diamond formation. Diamond and Related Materials 151, DOI: 10.1016/j.diamond.2024.111792.
37.
Vladyko et al. 2025 – Vladyko, O., Maltsev, D., Gliwiński, Ł., Dychkovskyi, R., Stecuła, K. and Dyczko, A. 2025. Enhancing Mining Enterprise Energy Resource Extraction Efficiency Through Technology Synthesis and Performance Indicator Development. Energies 18(7), DOI: 10.3390/en18071641.
38.
Wang et al. 2010 – Wang, L., Cavallini, A. and Montanari, G.C. 2010. Time behavior of gas pressure and PD activity in insulation cavities under AC voltage. 2010 Annual Report Conference on Electrical Insulation and Dielectic Phenomena, pp. 1–4, DOI: 10.1109/ceidp.2010.5724038.
39.
Zhang et al. 2021 – Zhang, X., Pang, B., Liu, X., Liu, S., Xu, P., Li, Ya, Liu, Yi., Qi, L. and Xie, Q. 2021. Review on detection and analysis of partial discharge along power cables. Energies 14(22), DOI: 10.3390/en14227692.
40.
Zolotarev et al. 2017 – Zolotarev, V.M., Shcherba, М.А., Gurin, А.G., Suprunovska, N.I., Chopov, Ye.Yu. and Obozny А.L. 2017. Electrotechnological complex for the production of cable systems for voltages up to 400 kV. Kyiv: Proformat, 594 p .
41.
Zradziński et al. 2019 – Zradziński, P., Karpowicz, J., Gryz, K. and Ramos, V. 2019. An Evaluation of Electromagnetic Exposure While Using Ultra-High Frequency Radiofrequency Identification (UHF RFID) Guns. Sensors 20(1), DOI: 10.3390/s20010202.