REVIEW PAPER
Comprehensive study of power supply systems for space rocket complexes with emphasis on control and power quality management
More details
Hide details
1
“Pivdenne” State Design Office, Ukraine
2
Dnipro University of Technology, Ukraine
3
AGH University of Science and Technology in Krakow, Poland
These authors had equal contribution to this work
Submission date: 2025-04-06
Final revision date: 2025-06-03
Acceptance date: 2025-06-05
Online publication date: 2025-09-11
Corresponding author
Vadym Reva
“Pivdenne” State Design Office, Ukraine
KEYWORDS
TOPICS
ABSTRACT
This research addresses the growing challenges posed by the increasing power demands of modern Space Rocket Complexes (SRCs), particularly in relation to integrating various types of electrical consumers. As SRC systems become more complex, ensuring electromagnetic compatibility and maintaining electric power quality are now critical and economically significant issues. The main objective of the study is to develop an algorithm for the optimal selection of power supply system (PSS) structures for SRCs, with a strong focus on electric power quality management. Several PSS configurations were analyzed and compared, each evaluated for reliability, control efficiency, and adaptability to operational conditions. A systematic algorithm and corresponding block diagram were created to guide the selection process, integrating power quality parameters into early design decisions. The methodology was tested using the Cyclone-4 launch complex as a case study. Within this framework, a prototype electric power quality control system was designed and partially implemented. Experimental testing validated the effectiveness of the proposed approach, confirming that early integration of power quality considerations significantly enhances system reliability and economic performance. Key findings emphasize the importance of incorporating power quality criteria into SRC infrastructure planning to ensure stable operation under complex and variable conditions. This study ultimately contributes to the development of more robust and efficient power systems for future space missions. It offers a structured and practical approach for selecting and managing power supply systems in high-demand aerospace environments, emphasizing the value of proactive quality control and comprehensive system design.
FUNDING
This work was conducted within the projects “Development, manufacturing and testing of power supply systems for the SRC ʻСyclone -4ʼ (Brazil), and power supply systems for the SRC ʻСyclone -4Мʼ (Canada)”
CONFLICT OF INTEREST
The Authors have no conflicts of interest to declare
METADATA IN OTHER LANGUAGES:
Polish
Kompleksowe badanie systemów zasilania zespołów rakiet kosmicznych ze szczególnym uwzględnieniem sterowania i zarządzania jakością energii
systemy zasilania (PSS), kosmiczne kompleksy rakietowe (SRC), energia, wskaźniki jakości energii elektrycznej
Praca poświęcona jest rozwiązaniu problemów i zwiększeniu całkowitej mocy konsumpcyjnej projektowanych kompleksów rakiet kosmicznych (SRC). Wraz ze wzrostem liczby różnorodnych odbiorników energii elektrycznej pojawia się problem kompatybilności elektromagnetycznej oraz jakości energii, co wpływa negatywnie na ekonomikę projektów. Niewystarczająca jakość energii prowadzi do zakłóceń pracy urządzeń oraz zwiększenia strat. W pracy rozważono i opisano różne struktury systemów zasilania kompleksów rakiet kosmicznych, wskazując ich zalety i wady. Przeprowadzono analizę możliwych zdarzeń wpływających na jakość energii w SRC oraz podano główne wskaźniki norm jakości, takie jak wahania napięcia, harmoniczne czy migotanie napięcia. Opracowano schemat blokowy algorytmu i nową strukturę systemu zasilania SRC, uwzględniającą zapewnienie wysokiej jakości energii. Szczegółowo opisano algorytm doboru struktury systemów zasilania, kładąc nacisk na praktyczną implementację. Zwrócono uwagę na czynniki i osobliwości działania systemów zasilania SRC, w tym zmienność obciążenia, wymagania środowiskowe oraz konieczność pracy w trybie awaryjnym. Opracowany algorytm został zastosowany do systemu zasilania kompleksu rakietowego „Cyklon-4”. Na jego podstawie stworzono system kontroli jakości energii elektrycznej umożliwiający monitorowanie parametrów w czasie rzeczywistym i szybką reakcję na odchylenia od norm. W ramach pracy przeprowadzono prace eksperymentalne, a wyniki badań potwierdziły skuteczność zaproponowanego rozwiązania. Głównym celem było wdrożenie algorytmu wyboru nowej struktury systemów zasilania SRC z uwzględnieniem jakości energii elektrycznej, co pozwala na zwiększenie niezawodności, efektywności oraz bezpieczeństwa projektowanych kompleksów.
REFERENCES (56)
1.
Bennett et al. 2001 – Bennett, E.B., Mingst, A., Simon, S. and Graedel, T.E. 2001. Improving the overall environmental performance of existing power generating facilities. IEEE Transactions on Energy Conversion 16(3), pp. 234–238, DOI: 10.1109/60.937202.
2.
Beshta et al. 2015 – Beshta, O., Albu, A., Balakhontsev, A. and Fedoreyko, V. 2015. Universal model of the galvanic battery as a tool for calculations of electric vehicles. Power Engineering, Control and Information Technologies in Geotechnical Systems, pp. 7–11, DOI: 10.1201/b18475-2.
3.
Białobrzeski et al. 2024 – Białobrzeski, O.V., Oliinichenko, M.Iu., Vorona, V.V. and Yakymets, S.M. 2024. Research on the distribution of symmetrical components in an electrical system with a diesel generator set under asymmetrical load. Electrical Engineering and Power Engineering 3, pp. 45–54, DOI: 10.15588/1607-6761-2024-3-5.
4.
Bollen, M. 1996. Voltage Sags: Effects, Prediction and Mitigation. Power Engineering Journal, pp. 129–135.
5.
Das et al. 2024 – Das, O., Zafar, M.H., Sanfilippo, F., Rudra, S. and Kolhe. M.L. 2024. Advancements in digital twin technology and machine learning for energy systems: A comprehensive review of applications in smart grids, renewable energy, and electric vehicle optimisation. Energy Conversion and Management: X, 24, DOI: 10.1016/j.ecmx.2024.100715.
6.
Dudek, M. 2014. The model for the calculation of the dispersed iron ore resource purchase cost in the world class manufacturing (WCM) logistics pillar context. Metalurgija 53(4), pp. 567–570.
7.
Dugan, R.C. 2004. Electrical Power Systems Quality. Digital Engineering Library, 521 p.
8.
Dychkovskyi et al. 2019 – Dychkovskyi, R., Tabachenko, M., Zhadiaieva, K. and Cabana, E. 2019. Some aspects of modern vision for geoenergy usage. E3S Web of Conferences 123, DOI: 10.1051/e3sconf/201912301010.
9.
Dychkovskyi et al. 2024 – Dychkovskyi, R., Dyczko, A. and Borojević Šoštarić, S. 2024. Foreword: Physical and Chemical Geotechnologies – Innovations in Mining and Energy. E3S Web of Conferences 567, DOI: 10.1051/e3sconf/202456700001.
10.
EN 50160:2022 Voltage characteristics of electricity supplied by public electricity networks.
11.
ESPI 2023. European Space Policy Institute. Strategic Autonomy in the European Space Sector: Challenges and Policy Responses. [Online:]
https://www.espi.or.at [Accessed: 2025-04-06].
12.
Fedoreiko, V. 2024. Distributed energy generation based on jet-vortex bioheat generators. E3S Web of Conferences 567, DOI: 10.1051/e3sconf/202456701001.
13.
Fedoreiko et al. 2013 – Fedoreiko, V.S., Rutylo, M.I. and Iskerskyi, I.S. 2013. Improvement of energy performance of the electrotechnological complex for production of solid biofuels using neural controller. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 5, pp. 78–85.
14.
Fedoreiko et al. 2014 – Fedoreiko, V.S., Rutylo, M.I., Lutsyk, I.B. and Zahorodnii, R.I. 2014. Thermoelectric modules application in heat generator coherent systems. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 6, pp. 111–116.
15.
Flores, R.A. 2002 State of the art in the classification of power quality events, an overview. Proceedings of the 2002 10th International Conference on Harmonics and Quality of Power, pp. 17–20, DOI: 10.1109/ICHQP.2002.1221398.
16.
Frolov, V.P. 2010. The method of forming the structures of uninterrupted power supply systems of launch complexes based on modeling: Ph.D. dissertation in technical sciences: 05.07.06. National Aerospace University named after N.E. Zhukovsky “Kharkiv Aviation Institute”, 176 p.
17.
Gladky, E.G. and Perlik, V.I. 2000. Influence of safety factors, used on designing, upon launch vehicles flight safety indexes. 50th International Astronautical Congress, IAF. Rio-de-Janero, 119 p.
18.
Golovchenko et al. 2020 – Golovchenko, A., Dychkovskyi, R., Pazynich, Y., Edgar, C.C., Howaniec, N., Jura, B. and Smolinski, A. 2020. Some Aspects of the Control for the Radial Distribution of Burden Material and Gas Flow in the Blast Furnace. Energies 13(4), DOI: 10.3390/en13040923.
19.
Hajji et al. 2020 – Hajji, M.E, Mahmoudi, H. and Labbadi, M. 2020. The electromagnetic interferance caused by high voltage power lines along the electrical rail-way equipment. International Journal of Electrical and Computer Engineering 10(5), pp. 4581–4891, DOI: 10.11591/ijece.v10i5.pp4581-4591.
20.
Hladkyi, E.H. 2020. New approaches to comprehensive assessment of flight safety and reliability of rocket and space systems: dissertation of Doc. of Tech. Sc.: 05.07.02 (Novi pidkhody do kompleksnoho otsiniuvannia polotnoi bezpeky i nadiinosti raketnokosmichnykh system: dys. dok. tekhn. nauk: 05.07.02). Dnipro, 370 p. (in Ukrainian).
21.
IEEE 1547:2003-Standard for Interconecting Distributed Resources with Electric Power System.
22.
Janik et al. 2017 – Janik, P., Kosobudzki, G. and Schwarz, H. 2017. Influence of increasing numbers of RE-inverters on the power quality in the distribution grids: A PQ case study of a representative wind turbine and photovoltaic system. Frontiers in Energy 11(2), pp. 155–167, DOI: 10.1007/s11708-017-0469-3.
23.
Kannu, P.D. and Thomas, T.M. 2003. Lightning-induced voltages in a satellite launch-pad protection system. IEEE Transactions on Electromagnetic Compatibility 45(4), pp. 644–651, DOI: 10.1109/TEMC.2003.819064.
24.
Kosenko et al. 2024 – Kosenko, A., Khomenko, O., Kononenko, M., Myronova, I. and Pazynich, Y. 2024. Raises advance using borehole hydraulic technology. E3S Web of Conferences 567, DOI: 10.1051/e3sconf/202456701008.
25.
Kumawat et al. 2023 – Kumawat, H., Tundwal, P. and Dave, V. 2023. Artificial Intelligence-Enabled Fault Detection and Diagnosis for Improved Power Quality in Hybrid Renewable Energy Systems. 3rd International Conference on Advancement in Electronics and Communication Engineering, pp. 480–485, DOI: 10.1109/AECE59614.2023.10428200.
26.
Kuznietsov, E.I. 2024. Thirty Years in Orbit. Second Edition. To the 32nd Anniversary of the Establishment of the State Space Agency of Ukraine (Trydtsiat rokiv na orbiti. Druhe vydannia. Do 32-richnytsi utvorennia Derzhavnoho kosmichnoho ahentstva Ukrainy). Kyiv: Space-Inform, 124 p. (in Ukrainian).
27.
Lamoree et al. 1994 – Lamoree J., Mueller D., Vinett P., Jones W. and Samotyj, M. 1994. Voltage Sag Analysis Case Studies. IEEE Transactions on Industry Applications 30(4), pp. 1083–1089, DOI: 10.1109/28.297926.
28.
Linnik, A.K. 2021. The systematic approach to the design of rocket and space technology: an illustrated course of lectures in a nutshell (Systemnyi pidkhid do proektuvannya raketno-kosmichnoi tekhniky: illustrovannyi kurs lekcii styslo). Dnipro: LIRA, 80 p. (in Ukrainian).
29.
Lofstrom, K.H. 1985. The Launch Loop – A low-cost earth-to-high-orbit launch system. 21st Joint Propulsion Conference, Monterey, CA, USA, DOI: 10.2514/6.1985-1368.
30.
Mahmood et al. 2024 – Mahmood, M., Chowdhury, P., Yeassin, R., Hasan, M., Ahmad, T. and Chowdhury, N.-U.-R. 2024. Impacts of digitalization on smart grids, renewable energy, and demand response: An updated review of current applications. Energy Conversion and Management: X 24, DOI: 10.1016/j.ecmx.2024.100790.
31.
Misljenovic et al. 2023 – Misljenovic, N., Znidarec, M., Knezevic, G., Sljivac, D. and Sumper, A. 2023. A Review of Energy Management Systems and Organizational Structures of Prosumers. Energies 16(7), DOI: 10.3390/en16073179.
32.
Nikolsky et al. 2020 – Nikolsky, V., Kuzyayev, I., Dychkovskyi, R., Alieksandrov, O., Yaris, V., Ptitsyn, S., Tikhaya, L., Howaniec, N., Bak, A., Siudyga, T., Jura, B., Cabana, E., Szymanek, A. and Smoliński, A. 2020. A Study of Heat Exchange Processes within the Channels of Disk Pulse Devices. Energies 13(13), DOI: 10.3390/en13133492.
33.
Nikolsky et al. 2022a – Nikolsky, V., Dychkovskyi, R., Cabana, E. C., Howaniec, N., Jura, B., Widera, K. and Smoliński, A. 2022a. The Hydrodynamics of Translational-Rotational Motion of Incompressible Gas Flow within the Working Space of a Vortex Heat Generator. Energies 15(4), DOI: 10.3390/en15041431.
34.
Nikolsky et al. 2022b – Nikolsky, V., Dychkovskyi, R., Lobodenko, A., Ivanova, H., Cabana, E.C. and Shavarskyi, Ja. 2022b. The thermodynamics of the developing contact heating of a process liquid. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 2, pp. 48–53, DOI: 10.33271/nvngu/2022-2/048.
35.
Papaika et al. 2025 – Papaika, Yu., Pivnyak, G. and Malyshko, M. 2025. Characteristics of Resonance Phenomena at Solar Power Plant Grid Connection Points. Physical and Chemical Geotechnologies 9(1), DOI: 10.15407/pcgt.25.01.
36.
Pazynich et al. 2024 – Pazynich, Y., Kolb, A., Korcyl, A., Buketov, V. and Petinova, O. 2024. Mathematical model and characteristics of dynamic modes for managing the asynchronous motors at voltage asymmetry. Polityka Energetyczna – Energy Policy Journal 27(4), pp. 39–58, DOI: 10.33223/epj/191779.
37.
Pivniak et al. 2022 – Pivniak, H., Aziukovskyi, O., Papaika, Yu., Lutsenko, I. and Neuberger, N. 2022. Problems of development of innovative power supply systems of Ukraine in the context of European integration. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 5, pp. 89–103, DOI: 10.33271/nvngu/2022-5/089.
38.
Pivnyak et al. 2015 – Pivnyak, G., Rogoza, M., Papaika, Y. and Lysenko, A. 2015. Traction and energy characteristics of no-contact electric mining loc omotives with AC current thyristor converters. Power Engineering, Control and Information Technologies in Geotechnical Systems, 1–6, DOI: 10.1201/b18475-1.
39.
Pivnyak et al. 2021 – Pivnyak, G, Azukovskiy, O., Papaika, Yu., Careres Cabana, E., Olczak, P. and Dyczko, A. 2021. Assessment of power supply energy efficiency by voltage quality criterion. Rynek Energii 4(155), pp. 75–84.
40.
Pivnyak et al. 2024 – Pivnyak, G., Azukovskiy, O., Papaika, Y., Caseres Cabana, E., Miedziński, B., Polnik, B., Jamróż, A. and Polyanska, A. 2024. Managing the power supply energy efficiency by means of higher harmonics. Polityka Energetyczna – Energy Policy Journal 27(4), pp. 59–80, DOI: 10.33223/epj/191813.
41.
Pivnyak et al. 2017 – Pivnyak, G.G., Zhezhelenko, I.V., Papaika, Yu.A. and Lysenko, O.H. 2017. Interharmonics in power supply systems. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 6, pp. 109–114.
42.
POLSA 2020. Polish Space Strategy 2017–2030. Polish Space Agency. [Online:]
https://polsa.gov.pl [Accessed: 2025-04-15].
43.
Polyanska et al. 2024a – Polyanska, A., Pazynich, Y., Mykhailyshyn, K., Babets, D. and Toś, P. 2024a. Aspects of energy efficiency management for rational energy resource utilization. Rudarsko-Geološko-Naftni Zbornik 39(3), pp. 13–26, DOI: 10.17794/rgn.2024.3.2.
44.
Polyanska et al. 2024b – Polyanska, A., Pazynich, Y., Petinova, O., Nesterova, O., Mykytiuk, N. and Bodnar, G. 2024b. Formation of a Culture of Frugal Energy Consumption in the Context of Social Security. ICON: Journal of the International Committee for the History of Technology 29(2), pp. 60–87, DOI: 10.11590/icon.2024.2.03.
45.
Reva et al. 2025 – Reva, V., Zemlyanyi, K., Udovyk., O., Leonov, O. and Jamiński, M. 2025. Power Supply Systems for Space Rocket Complexes: Considerations for Power Quality Management and Control. Physical and Chemical Geotechnologies 9(1), DOI: 10.15407/pcgt.25.12.
46.
Rey, G.R. and Muneta, L.M. 2011. Power Quality Harmonics Analysis and Real Measurements. Data InTech, 289 p.
47.
Richert et al. 2024 – Richert, M., Dudek, M. and Sala, D. 2024. Surface Quality as a Factor Affecting the Functionality of Products Manufactured with Metal and 3D Printing Technologies. Materials 17(21), DOI: 10.3390/ma17215371.
48.
Sandhu, S.K. and Jain, K. 1999. Operational Aspects of Self-Excited Induction Generator Using a New Model. Electric Machines & Power Systems 27(2), pp. 169–180, DOI: 10.1080/073135699269370.
49.
Seheda et al. 2024 – Seheda, M.S., Beshta, O.S., Gogolyuk, P.F., Blyznak, Yu.V., Dychkovskyi, R.D. and Smoliński, A. 2024. Mathematical model for the management of the wave processes in three-winding transformers with consideration of the main magnetic flux in mining industry. Journal of Sustainable Mining 23(1), pp. 20–39, DOI: 10.46873/2300-3960.1402.
50.
Sivathanu Pillai, A. 2022. Rocket Systems Development. [In:] Introduction to Rocket Science and Space Exploration, pp. 81–114, Boca Raton, DOI: 10.1201/9781003323396-5.
51.
Sobolev et al. 2020 – Sobolev, V., Cabana, E.C., Howaniec, N., Dychkovskyi, R., Jura, B., Bąk, A., Iwaszenko, S. and Smoliński, A. 2020. Estimation of Dense Plasma Temperature Formed under Shock Wave Cumulation. Materials 13(21), DOI: 10.3390/ma13214923.
52.
Stones, J. and Collinson, A. 2001. Power Quality. Power Engineering Journal 15(2), pp. 58–64, DOI: 10.1049/pe:20010201.
53.
Tabachenko et al. 2016 – Tabachenko, M., Saik, P., Lozynskyi, V., Falshtynskyi, V. and Dychkovskyi, R. 2016. Features of setting up a complex, combined and zero-waste gasifier plant. Mining of Mineral Deposits 10(3), pp. 37–45, DOI: 10.15407/mining10.03.037.
54.
Wachowicz, M. 2022. Poland’s growing role in the European space sector. Space Policy 61, DOI: 10.1016/j.spacepol.2022.101481.
55.
Wessler, L.E. 1986. Supervision and Monitoring Systems for Communications Power Plants from Remote Locations. INTELEC ’86 – International Telecommunications Energy Conference, pp. 259–268, DOI: 10.1109/intlec.1986.4794435.
56.
Zalewski et al. 2023 – Zalewski, P., Kachel, S. and Motyl, K. 2023. Space Rocket for Air-rocket System. Journal of Konbin 53(2), pp. 45–64, DOI: 10.5604/01.3001.0053.7125.