ORIGINAL PAPER
Development of technologies for automated control of heat supply systems based on renewable energy sources
 
More details
Hide details
1
Department of Thermal Power Engineering, L.N. Gumilyov Eurasian National University, Kazakhstan
 
2
Higher School of Electrical Engineering and Automation, West Kazakhstan Agrarian and Technical University named after Zhangir Khan, Kazakhstan
 
3
Department of Technical Disciplines, Kazakhstan University of Innovation and Telecommunication Systems, Kazakhstan
 
 
Submission date: 2025-02-06
 
 
Final revision date: 2025-05-12
 
 
Acceptance date: 2025-05-12
 
 
Publication date: 2025-06-23
 
 
Corresponding author
Askhat Aliyev   

Department of Thermal Power Engineering, L.N. Gumilyov Eurasian National University, Kazakhstan
 
 
Polityka Energetyczna – Energy Policy Journal 2025;28(2):113-134
 
KEYWORDS
TOPICS
ABSTRACT
The study is conducted to optimize technologies for automated control of heat supply systems based on renewable energy sources that can increase energy efficiency and reduce environmental impact. The study uses machine learning methods for predicting heat energy consumption, intelligent monitoring and diagnostics systems, and control automation algorithms to optimize the operation of heat supply systems based on renewable energy sources. As a result of the study, an automated heat supply management system based on renewable energy sources is analyzed, which demonstrated high energy efficiency and flexibility in operation. The use of intelligent algorithms allows optimising the distribution of heat energy, considering fluctuations in weather conditions and loads. Automation of control processes reduces operating costs and minimizes human intervention. It is also established that the integration of solar collectors and geothermal sources into a single system reduces dependence on traditional energy sources and carbon dioxide emissions. The study shows that optimizing the use of renewable sources with automated control not only increases the reliability of heat supply but also contributes to reducing operating costs in comparison with traditional systems. This confirms the prospects of such technologies for broad application in municipal and industrial heat supply systems. In addition, it is determined that automated control systems contribute to more accurate forecasting of thermal energy needs, which reduces the risk of overloads and interruptions in heat supply. The study also shows that the use of combined sources of renewable energy, such as solar and geothermal installations, increases the overall efficiency of the system.
CONFLICT OF INTEREST
The Authors have no conflicts of interest to declare.
METADATA IN OTHER LANGUAGES:
Polish
Rozwój technologii automatycznego sterowania systemami zaopatrzenia w ciepło opartymi na odnawialnych źródłach energii
inteligentne algorytmy, kolektory słoneczne, redukcja rozładowania, warunki pogodowe i prognozowanie zapotrzebowania
W artykule przedstawiono badanie, które przeprowadzono w celu optymalizacji technologii automatycznego sterowania systemami zaopatrzenia w ciepło opartymi na odnawialnych źródłach energii, które mogą zwiększyć efektywność energetyczną i zmniejszyć wpływ na środowisko. Badanie wykorzystuje metody uczenia maszynowego do przewidywania zużycia energii cieplnej, inteligentne systemy monitorowania i diagnostyki oraz algorytmy automatyzacji sterowania w celu optymalizacji działania systemów zaopatrzenia w ciepło opartych na odnawialnych źródłach energii. W wyniku badań przeanalizowano zautomatyzowany system zarządzania dostawami ciepła oparty na odnawialnych źródłach energii, który wykazał się wysoką efektywnością energetyczną i elastycznością w działaniu. Zastosowanie inteligentnych algorytmów pozwala na optymalizację dystrybucji energii cieplnej z uwzględnieniem wahań warunków pogodowych i obciążeń. Automatyzacja procesów sterowania zmniejsza koszty operacyjne i minimalizuje interwencję człowieka. Ustalono również, że integracja kolektorów słonecznych i źródeł geotermalnych w jednym systemie zmniejsza zależność od tradycyjnych źródeł energii i emisję dwutlenku węgla. Badanie pokazuje, że optymalizacja wykorzystania źródeł odnawialnych z automatycznym sterowaniem nie tylko zwiększa niezawodność dostaw ciepła, ale także przyczynia się do obniżenia kosztów operacyjnych w porównaniu z tradycyjnymi systemami. Potwierdza to perspektywy szerokiego zastosowania takich technologii w miejskich i przemysłowych systemach zaopatrzenia w ciepło. Ponadto stwierdzono, że zautomatyzowane systemy sterowania przyczyniają się do dokładniejszego prognozowania zapotrzebowania na energię cieplną, co zmniejsza ryzyko przeciążeń i przerw w dostawach ciepła. Badanie pokazuje również, że wykorzystanie połączonych źródeł energii odnawialnej, takich jak instalacje słoneczne i geotermalne, zwiększa ogólną wydajność systemu.
REFERENCES (56)
1.
Abadi et al. 2015 – Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y. and Zheng, X. 2015. TensorFlow: Large-scale machine learning on heterogeneous distributed systems. [Online] https://static.googleuserconte... [Accessed: 2025-03-20].
 
2.
Ageed et al. 2021 – Ageed, Z.S., Zeebaree, S.R., Sadeeq, M.A., Abdulrazzaq, M.B., Salim, B.W., Salih, A.A., Bada, W. and Hazar, A.Y. 2021. A state of art survey for intelligent energy monitoring systems. Asian Journal of Research in Computer Science 8(1), pp. 46–61, DOI: 10.9734/ajrcos/2021/v8i130192.
 
3.
Ahmad et al. 2022 – Ahmad, T., Madonski, R., Zhang, D., Huang, C. and Mujeeb, A. 2022. Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm. Renewable and Sustainable Energy Reviews 160, DOI: 10.1016/j.rser.2022.112128.
 
4.
Ali et al. 2022 – Ali, A.O., Elmarghany, M.R., Abdelsalam, M.M., Sabry, M.N. and Hamed, A.M. 2022. Closed-loop home energy management system with renewable energy sources in a smart grid: A comprehensive review. Journal of Energy Storage 50, DOI: 10.1016/j.est.2022.104609.
 
5.
Aman et al. 2021 – Aman, A.H.M., Shaari, N. and Ibrahim, R. 2021. Internet of things energy system: Smart applications, technology advancement, and open issues. International Journal of Energy Research 45(6), pp. 8389–8419, DOI: 10.1002/er.6451.
 
6.
Ang et al. 2022 – Ang, T.-Z., Salem, M., Kamarol, M., Das, H.S., Nazari, M.A. and Prabaharan, N. 2022. A comprehensive study of renewable energy sources: Classifications, challenges and suggestions. Energy Strategy Reviews 43, DOI: 10.1016/j.esr.2022.100939.
 
7.
Bathla et al. 2022 – Bathla, G., Bhadane, K., Singh, R.K., Kumar, R., Aluvalu, R., Krishnamurthi, R., Kumar, A., Thakur R.N. and Basheer, S. 2022. Autonomous vehicles and intelligent automation: Applications, challenges, and opportunities. Mobile Information Systems 1, DOI: 10.1155/2022/7632892.
 
8.
BioHeat Green 5000 2025. [Online] https://bioheatresources.com/ [Accessed: 2025-03-20].
 
9.
Borisov et al. 1986 – Borisov, Yu.S., Korzhik, V.N., Kunitskii, Ya.A., Revo, S.L. and Gritskiv, Ya.P. 1986. Structural transformations in thermal spray coatings of Ni60Nb40 alloy in vacuum annealings. Soviet Powder Metallurgy and Metal Ceramics 25(10), pp. 821–826, DOI: 10.1007/BF00801429.
 
10.
Capasso et al. 2021 – Capasso, C., Rubino, L., Rubino, G. and Veneri, O. 2021. Data Analytics for Performance Modelling of Photovoltaic Systems in the Internet of Energy Scenario. [In:] 2021 IEEE 15th International Conference on Compatibility, Power Electronics and Power Engineering, CPE-POWERENG 2021. Florence: Institute of Electrical and Electronics Engineers, DOI: 10.1109/CPE-POWERENG50821.2021.9501202.
 
11.
Chen et al. 2021 – Chen, C., Hu, Y., Karuppiah, M. and Kumar, P.M. 2021. Artificial intelligence on economic evaluation of energy efficiency and renewable energy technologies. Sustainable Energy Technologies and Assessments 47, DOI: 10.1016/j.seta.2021.101358.
 
12.
Feron et al. 2021 – Feron, S., Cordero, R.R., Damiani, A. and Jackson, R.B. 2021. Climate change extremes and photovoltaic power output. Nature Sustainability 4, pp. 270–276, DOI: 10.1038/s41893-020-00643-w.
 
13.
Fialko et al. 1994 – Fialko, N.M., Prokopov, V.G., Meranova, N.O., Borisov, Yu.S., Korzhik, V.N. and Sherenkovskaya, G.P. 1994. Single particle-substrate thermal interaction during gas-thermal coatings fabrication. Fizika i Khimiya Obrabotki Materialov 1, pp. 70–78.
 
14.
Forootan et al. 2022 – Forootan, M.M., Larki, I., Zahedi, R. and Ahmadi, A. 2022. Machine learning and deep learning in energy systems: A review. Sustainability 14(8), DOI: 10.3390/su14084832.
 
15.
GeoTherm Plus 2025. [Online] https://www.vaillant.ua/downlo... [Accessed: 2025-03-20].
 
16.
Ghilardi et al. 2021 – Ghilardi, L.M.P., Castelli, A.F., Moretti, L., Morini, M. and Martelli, E. 2021. Co-optimization of multi-energy system operation, district heating/cooling network and thermal comfort management for buildings. Applied Energy 302, DOI: 10.1016/j.apenergy.2021.117480.
 
17.
Graveto et al. 2022 – Graveto, V., Cruz, T. and Simöes, P. 2022. Security of Building Automation and Control Systems: Survey and future research directions. Computers & Security 112, DOI: 10.1016/j.cose.2021.102527.
 
18.
Grundfos MAGNA3 2025. [Online] https://www.grundfos.com/ [Accessed: 2025-03-20].
 
19.
Guelpa, E. and Verda, V. 2021. Demand response and other demand side management techniques for district heating: A review. Energy 219, DOI: 10.1016/j.energy.2020.119440.
 
20.
Hayvanovych et al. 2003 – Hayvanovych, V. and Pysh’yev, S. 2003. Desulfurization of Low-Rank Coal with High Sulfur Content is the First Stage of Coal Burning at Heat Electric Stations. Energy & Fuels 17(5), pp. 1186–1190, DOI: 10.1021/ef0202945.
 
21.
He et al. 2022 – He, Z., Guo, W. and Zhang, P. 2022. Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods. Renewable and Sustainable Energy Reviews 156, DOI: 10.1016/j.rser.2021.111977.
 
22.
HelioPower 3000 2025. [Online] https://certifiedhumane.org/he... [Accessed: 2025-03-20].
 
23.
Hofmeister et al. 2022 – Hofmeister, M., Mosbach, S., Hammacher, J., Blum, M., Röhrig, G., Dörr, C., Flegel, V., Bhave, A. and Kraft, M. 2022. Resource-optimised generation dispatch strategy for district heating systems using dynamic hierarchical optimisation. Applied Energy 305, DOI: 10.1016/j.apenergy.2021.117877.
 
24.
Iskandarov et al. 2020 – Iskandarov, E.K., Ismayilov, G.G. and Ismayilova, F.B. 2020. Diagnostic operation of gas pipelines based on artificial neuron technologies. Advances in Intelligent Systems and Computing 1095, pp. 787–791, DOI: 10.1007/978-3-030-35249-3_103.
 
25.
Kaldate et al. 2021 – Kaldate, A.P., Kanase-Patil, A.B. and Lokhande, S.D. 2021. Review of SCADA-based hybrid renewable energy source integration. International Journal of Spatio-Temporal Data Science 1(3), pp. 215–226, DOI: 10.1504/IJSTDS.2021.118778.
 
26.
Kaldybaev et al. 2024 – Kaldybaev, N.A., Sopubekov, N.A., Mamatkasymova, A.T., Ramankulova, G.N. and Toktomuratova, G.S. 2024. Methodological Basis for Assessing Negative Factors of Mineral Extraction on Beds of Rivers and Watercourses. Advances in Science, Technology and Innovation F2358, pp. 287–293, DOI: 10.1007/978-3-031-51272-8_47.
 
27.
Kovach et al. 2024 – Kovach, D., Kullolli, B., Djaparova, S., Mikhnevych, L. and Myskovets, I. 2024. Legal aspects of environmental sustainability and climate change: the role of international and national legislation. Journal of Environmental Law and Policy 4(2), pp. 149–179, DOI: 10.33002/jelp040206.
 
28.
Kucher et al. 2022 – Kucher, O., Hutsol, T., Glowacki, S., Andreitseva, I., Dibrova, A., Muzychenko, A., Szeląg-Sikora, A., Szparaga, A. and Kocira, S. 2022. Energy Potential of Biogas Production in Ukraine. Energies 15(5), DOI: 10.3390/en15051710.
 
29.
Kudabayev et al. 2022 – Kudabayev, R., Mizamov, N., Zhangabay, N., Suleimenov, U., Kostikov, A., Vorontsova, A., Buganova, S., Umbitaliyev, A., Kalshabekovа, E. and Aldiyarov, Z. 2022. Construction of a model for an enclosing structure with a heat-accumulating material with phase transition taking into account the process of solar energy accumulation. Eastern-European Journal of Enterprise Technologies 6(8-120), pp. 26–37, DOI: 10.15587/1729-4061.2022.268618.
 
30.
Kunitskii et al. 1990 – Kunitskii, Y.A., Korzhik, V.N. and Nemirovskii, A.V. 1990. Transformations in the plasma-sprayed Fe67Ti7B24C2 alloy in heating. Soviet Materials Science 26(1), pp. 87–90, DOI: 10.1007/BF00734547.
 
31.
Kunitskiy et al. 1988 – Kunitskiy, Y.A., Nemirovskiy, A.V. and Korzhik, V.N. 1988. Change of local magnetic parameters in cast amorphous and sprayed Fe40Ni40B20 alloys after mechanical and heat-treatment. Fizika Metallov i Metallovedenie 65(2), pp. 295–301.
 
32.
Li et al. 2023 – Li, J., Herdem, M.S., Nathwani, J. and Wen, J.Z. 2023. Methods and applications for Artificial Intelligence, Big Data, Internet of Things, and Blockchain in smart energy management. Energy and AI 11, DOI: 1016/j.egyai.2022.100208.
 
33.
Linchenko et al. 2022 – Linchenko, V., Zhuk, D., Lysenko, N., Stepenko, S. and Zhuk, I. 2022. Green energy: Problems of environmental protection. Ecological Safety and Balanced Use of Resources 13(2), pp. 58–68, DOI: 10.31471/2415-3184-2022-2(26)-58-68.
 
34.
Lyden et al. 2022 – Lyden, A., Brown, C.S., Kolo, I., Falcone, G. and Friedrich, D. 2022. Seasonal thermal energy storage in smart energy systems: District-level applications and modelling approaches. Renewable and Sustainable Energy Reviews 167, DOI: 10.1016/j.rser.2022.112760.
 
35.
Merabet et al. 2021 – Merabet, G.H., Essaaidi, M., Haddou, M.B., Qolomany, B., Qadir, J., Anan, M., Al-Fuqaha, A., Abid, M.R. and Benhaddou, D. 2021. Intelligent building control systems for thermal comfort and energy-efficiency: A systematic review of artificial intelligence-assisted techniques. Renewable and Sustainable Energy Reviews 144, DOI: 10.1016/j.rser.2021.110969.
 
36.
Parvin et al. 2021 – Parvin, K., Lipu, M.S.H., Hannan, M.A., Abdullah, M.A., Jern, K.P., Begum, R.A., Mansur, M., Muttaqi, K.M., Mahlia, T.M.I. and Dong, Z.Y. 2021. Intelligent controllers and optimization algorithms for building energy management towards achieving sustainable development: challenges and prospects. Institute of Electrical and Electronics Engineers Access 9, pp. 41577–41602, DOI: 10.1109/ACCESS.2021.3065087.
 
37.
Potrč et al. 2021 – Potrč, S., Čuček, L., Martin, M. and Kravanja, Z. 2021. Sustainable renewable energy supply networks optimization – The gradual transition to a renewable energy system within the European Union by 2050. Renewable and Sustainable Energy Reviews 146, DOI: 10.1016/j.rser.2021.111186.
 
38.
Rabani et al. 2021 – Rabani, M., Madessa, H.B. and Nord, N. 2021. Achieving zero-energy building performance with thermal and visual comfort enhancement through optimization of fenestration, envelope, shading device, and energy supply system. Sustainable Energy Technologies and Assessments 44, DOI: 10.1016/j.seta.2021.101020.
 
39.
Raihan, A. and Tuspekova, A. 2022. Role of economic growth, renewable energy, and technological innovation to achieve environmental sustainability in Kazakhstan. Current Research in Environmental Sustainability 4, DOI: 10.1016/j.crsust.2022.100165.
 
40.
Richter et al. 2022 – Richter, L., Lehna, M., Marchand, S., Scholz, C., Dreher, A., Klaiber, S. and Lenk, S. 2022. Artificial intelligence for electricity supply chain automation. Renewable and Sustainable Energy Reviews 163, DOI: 10.1016/j.rser.2022.112459.
 
41.
Rubino, L. and Rubino, G. 2020. Definition of the solid state circuit breaker limits working with active clamp driver. [In:] 2020 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2020, pp. 387–390. Sorrento: Institute of Electrical and Electronics Engineers. DOI: 10.1109/SPEEDAM48782.2020.9161839.
 
42.
Schneider EcoStruxure 2025. [Online] https://www.se.com/ua/uk/work/... [Accessed: 2025-03-20].
 
43.
Siemens SIMATIC SCADA 2025. [Online] https://www.siemens.com/ua/uk/... [Accessed: 2025-03-20].
 
44.
Soussi et al. 2022 – Soussi, M., Chaibi, M.T., Buchholz, M. and Saghrouni, Z. 2022. Comprehensive review on climate control and cooling systems in greenhouses under hot and arid conditions. Agronomy 12(3), DOI: 10.3390/agronomy12030626.
 
45.
Stoliarov, O. 2024. Efficient electricity generation forecasting from solar power plants using technology: Integration, benefits and prospects. Bulletin of Cherkasy State Technological University 29(1), pp. 73–85, DOI: 10.62660/bcstu/1.2024.73.
 
46.
Sukhodub, I. and Serdechnyi, P. 2024. Analysis of scenarios for increasing the level of energy efficiency of public buildings with integration of RES. Technologies and Engineering 25(2), pp. 44–56, DOI: 10.30857/2786-5371.2024.2.5.
 
47.
Sydorets et al. 2017 – Sydorets, V., Korzhyk, V., Khaskin, V., Babych, O. and Berdnikova, O. 2017. On the thermal and electrical characteristics of the hybrid plasma-MIG welding process. Materials Science Forum 906, pp. 63–71, DOI: 10.4028/www.scientific.net/MSF.906.63.
 
48.
Tagybayev et al. 2023 – Tagybayev, A., Zhangabay, N., Suleimenov, U., Avramov, K., Uspenskyi, B. and Umbitaliyev, A. 2023. Revealing patterns of thermophysical parameters in the designed energy-saving structures for external fencing with air channels. Eastern-European Journal of Enterprise Technologies 4(8(124)), pp. 32–43, DOI: 10.15587/1729-4061.2023.286078.
 
49.
Tempest API 2025. [Online] https://business.tempest.earth... [Accessed: 2025-04-20].
 
50.
Wang et al. 2022 – Wang, Y., Wang, J. and He, W. 2022. Development of efficient, flexible and affordable heat pumps for supporting heat and power decarbonisation in the UK and beyond: Review and perspectives. Renewable and Sustainable Energy Reviews 154, DOI: 10.1016/j.rser.2021.111747.
 
51.
Wang, F. and You, T. 2023. Synergetic performance improvement of a novel building integrated photovoltaic/thermal-energy pile system for co-utilization of solar and shallow-geothermal energy. Energy Conversion and Management 288, DOI: 10.1016/j.enconman.2023.117116.
 
52.
Waqas, M. and Jamil, M. 2024. Smart IoT SCADA system for hybrid power monitoring in remote natural gas pipeline control stations. Electronics 13(16), DOI: 10.3390/electronics13163235.
 
53.
Zakari et al. 2022 – Zakari, A., Khan, I., Tan, D., Alvarado, R. and Dagar, V. 2022. Energy efficiency and sustainable development goals (SDGs). Energy 239, DOI: 10.1016/j.energy.2021.122365.
 
54.
Zhang et al. 2022 – Zhang, S., Ocłoń, P., Klemeš, J.J., Michorczyk, P., Pielichowska, K. and Pielichowski, K. 2022. Renewable energy systems for building heating, cooling and electricity production with thermal energy storage. Renewable and Sustainable Energy Reviews 165, DOI: 10.1016/j.rser.2022.112560.
 
55.
Zhu et al. 2024 – Zhu, Y., Wu, S., Li, J., Jia, Q., Zhang, T., Zhang, X., Han, D. and Tan, Y. 2024. Towards a carbon-neutral community: Integrated renewable energy systems (IRES) – Sources, storage, optimization, challenges, strategies and opportunities. Journal of Energy Storage 83, DOI: 10.1016/j.est.2024.110663.
 
56.
Zuo et al. 2024 – Zuo, Z., Cao, R. and Teymurova, V. 2024. Unlocking natural resource potential: A balanced strategies for a fair and sustainable economic recovery. Resources Policy 89, DOI: 10.1016/j.resourpol.2023.104518.
 
eISSN:2720-569X
ISSN:1429-6675
Journals System - logo
Scroll to top