ORIGINAL PAPER
Green energy from bio-waste – study on the properties of olive stones for use as fuel in small-scale heating systems
 
More details
Hide details
1
The Department of Renewable Energy and Environmental Research, Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Poland
 
These authors had equal contribution to this work
 
 
Submission date: 2024-10-15
 
 
Final revision date: 2025-05-12
 
 
Acceptance date: 2025-05-12
 
 
Publication date: 2025-06-23
 
 
Corresponding author
Tomasz Mirowski   

The Department of Renewable Energy and Environmental Research, Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Kraków, Poland
 
 
Polityka Energetyczna – Energy Policy Journal 2025;28(2):135-150
 
KEYWORDS
TOPICS
ABSTRACT
This study explores the potential of olive stones as a renewable biofuel for small-scale heating systems. Olive oil production generates approximately 4 million tonnes of olive stones annually, often classified as waste. By analyzing their elemental and physical properties, this research evaluates the energy potential of olive stones, offering a sustainable alternative to traditional fuels. A sample from Spain underwent elemental, technical, and thermogravimetric analyses. The results revealed a high calorific value of 18.26 MJ/kg, which can be attributed to the considerable carbon (47.4%) and hydrogen (6.1%) content, along with minimal sulfur levels. This composition makes olive stones a promising low-emission fuel. Thermogravimetric analysis showed that pyrolysis occurs in four phases, with 65% of the mass lost between 170 and 866°C, indicating the material’s suitability for thermal energy applications. The findings suggest that olive stones hold significant potential for use in renewable energy systems. Their utilization aligns with circular economy principles, transforming waste into energy and reducing environmental impact. Olive stones have low ash and moisture content, improving their efficiency as a fuel. Their high volatile matter content also supports energy-efficient gasification processes, further enhancing their energy potential. In conclusion, this study confirms that olive stones are a viable alternative to fossil fuels, particularly for small-scale heating applications. With their high energy value, low emissions, and minimal residual waste, olive stones offer a sustainable and efficient energy solution. Their use not only supports green energy production but also contributes to reducing the carbon footprint and promoting sustainability.
CONFLICT OF INTEREST
The Authors have no conflicts of interest to declare.
METADATA IN OTHER LANGUAGES:
Polish
Zielona energia z bioodpadów – badanie właściwości pestek oliwek do wykorzystania jako paliwa w małych systemach grzewczych
pestki oliwek, biopaliwo, energia odnawialna, piroliza, gospodarka o obiegu zamkniętym
Niniejsze badanie analizuje potencjał pestek oliwek jako odnawialnego biopaliwa do małoskalowych systemów grzewczych. Produkcja produktów pochodnych z oliwek, takich jak oliwa z oliwek, generuje znaczne ilości produktów ubocznych, rocznie powstaje około 4 milionów ton pestek oliwek, które często są traktowane jako odpady. Analiza właściwości fizykochemicznych pestek oliwek zapewnia informacje na temat możliwości wykorzystania ich jako źródła energii. Próbka, pochodząca z Hiszpanii, została poddana analizie elementarnej, technicznej oraz termograwimetrycznej. Wyniki wykazały, że pestki oliwek charakteryzują się wysoką wartością opałową (18,26 MJ/kg), co wynika z ich znacznej zawartości węgla (47,4%) i wodoru (6,1%) oraz niskiej zawartości siarki, czyniąc je obiecującym paliwem niskoemisyjnym. Analiza termograwimetryczna ujawniła, że piroliza przebiega w czterech wyraźnych fazach, z utratą 65% masy w zakresie temperatur od 170 do 866°C, co potwierdza przydatność materiału w procesach wytwarzania energii cieplnej. Wnioski z badania wskazują, że pestki oliwek, jako łatwo dostępny produkt uboczny, mają znaczący potencjał do wykorzystania w systemach energii odnawialnej, wspierając tym samym cele zrównoważonego rozwoju i gospodarki obiegu zamkniętego.
REFERENCES (27)
1.
Act on Renewable Energy Sources (“RES Act”, Dz.U. 2015, poz. 478), 2015.
 
2.
Awad, A. 2024. Removal efficiency, metal uptake, and breakthrough curve of aqueous lead ions removal using olive stone waste. Results in Engineering 22, DOI: 10.1016/j.rineng.2024.102311.
 
3.
Bartocci et al. 2015 – Bartocci, P., D’Amico, M., Moriconi, N., Bidini, G. and Fantozzi, F. 2015. Pyrolysis of Olive Stone for Energy Purposes. Energy Procedia 82, pp. 374–380, DOI: 10.1016/j.egypro.2015.11.808.
 
4.
Boitier et al. 2023 – Boitier, B., Nikas, A., Gambhir, A., Koasidis, K., Elia, A., Al-Dabbas, K., Alibaş, Ş., Campagnolo, L., Chiodi, A., Delpiazzo, E., Doukas, H., Fougeyrollas, A., Gargiulo, M., Le Mouël, P., Neuner, F., Perdana, S., van de Ven, D.-J., Vielle, M., Zagamé, P. and Mittal, S. 2023. A multi-model analysis of the EU’s path to net zero. Joule 7(12), pp. 2760–2782, DOI: 10.1016/j.joule.2023.11.002.
 
5.
Cifuentes-Faura, J. 2022. European Union policies and their role in combating climate change over the years. Air Quality, Atmosphere & Health 15, pp. 1333–1340, DOI: 10.1007/s11869-022-01156-5.
 
6.
European Commission 2024. Olive oil production. [Online] https://agridata.ec.europa.eu/... [Accessed: 2025-03-25].
 
7.
European Environment Agency (EEA) 2024. Capturing the climate change mitigation benefits of circular economy and waste sector policies and measures.
 
8.
Fadhil, A.B. and Kareem, B.A. 2021. Co-pyrolysis of mixed date pits and olive stones: Identification of bio-oil and the production of activated carbon from bio-char. Journal of Analytical and Applied Pyrolysis 158, DOI: 10.1016/j.jaap.2021.105249.
 
9.
García Martín et al. 2020 – García Martín, J.F., Cuevas, M., Feng, C.-H., Álvarez Mateos, P., Torres García, M. and Sánchez, S. 2020. Energetic Valorisation of Olive Biomass: Olive-Tree Pruning, Olive Stones and Pomaces. Processes 8(5), DOI: 10.3390/pr8050511.
 
10.
Ghisellini et al. 2016 – Ghisellini, P., Cialani, C. and Ulgiati, S. 2016. A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems. Journal of Cleaner Production 114, pp. 11–32, DOI: 10.1016/j.jclepro.2015.09.007.
 
11.
International Energy Agency 2021. What does net-zero emissions by 2050 mean for bioenergy and land use?.
 
12.
Kalmykova et al. 2018 – Kalmykova, Y., Sadagopan, M. and Rosado, L. 2018. Circular economy – From review of theories and practices to development of implementation tools. Resources, Conservation and Recycling 135, 190–201, DOI: 10.1016/j.resconrec.2017.10.034.
 
13.
Lacombe et al. 2024 – Lacombe, E., Grateau, M., Marchand, M., Melkior, T. and Dupont, C. 2024. Torrefaction of oak and olive stones in a semi-industrial multiple hearth furnace: Products yields and composition. Biomass Bioenergy 181, DOI: 10.1016/j.biombioe.2024.107057.
 
14.
Linstorm, P.J. and Mallard, G. 2023. Water. NIST Chemistry WebBook; U.S. Secretary of Commerce: Washington DC 69.
 
15.
Mirowski et al. 2020 – Mirowski, T., Jach-Nocoń, M., Jelonek, I. and Nocoń, A. 2020. The new meaning of solid fuels from lignocellulosic biomass used in low-emission automatic pellet boilers. Polityka Energetyczna – Energy Policy Journal 23(1), pp. 75–86, DOI: 10.33223/epj/119620.
 
16.
Mirowski et al. 2024 – Mirowski, T., Pacura, W. and Domagała, J. 2024. Analysis of sawdust from pine wood. [In:] MEERI PAS Statutory Work 2024. pp. 1–60.
 
17.
Mumbach e tal. 2022 – Mumbach, G.D., Alves, J.L.F., da Silva, J.C.G., Domenico, M. Di, Marangoni, C., Machado, R.A.F. and Bolzan, A. 2022. Investigation on prospective bioenergy from pyrolysis of butia seed waste using TGA-FTIR: Assessment of kinetic triplet, thermodynamic parameters and evolved volatiles. Renewable Energy 191, pp. 238–250, DOI: 10.1016/j.renene.2022.03.159.
 
18.
Najar et al. 2024 – Najar, I.N., Sharma, P., Das, R., Tamang, S., Mondal, K., Thakur, N., Gandhi, S.G. and Kumar, V. 2024. From waste management to circular economy: Leveraging thermophiles for sustainable growth and global resource optimization. Journal of Environmental Management 360, DOI: 10.1016/j.jenvman.2024.121136.
 
19.
Ovaere, M. and Proost, S. 2022. Cost-effective reduction of fossil energy use in the European transport sector: An assessment of the Fit for 55 Package. Energy Policy 168, DOI: 10.1016/j.enpol.2022.113085.
 
20.
Rasam et al. 2022 – Rasam, S., Azizi, K., Moraveji, M.K., Akbari, A. and Soria-Verdugo, A. 2022. Insights into the co–pyrolysis of olive stone, waste polyvinyl chloride and Spirulina microalgae blends through thermogravimetric analysis. Algal Research 62, DOI: 10.1016/j.algal.2022.102635.
 
21.
Rodríguez et al. 2008 – Rodríguez, G., Lama, A., Rodríguez, R., Jiménez, A., Guillén, R. and Fernández-Bolaños, J. 2008. Olive stone an attractive source of bioactive and valuable compounds. Bioresource Technology 99, pp. 5261–5269, DOI: 10.1016/j.biortech.2007.11.027.
 
22.
Trubetskaya et al. 2023 – Trubetskaya, A., von Berg, L., Johnson, R., Moore, S., Leahy, J., Han, Y., Lange, H. and Anca-Couce, A. 2023. Production and characterization of bio-oil from fluidized bed pyrolysis of olive stones, pinewood, and torrefied feedstock. Journal of Analytical and Applied Pyrolysis 169, DOI: 10.1016/j.jaap.2022.105841.
 
23.
Tzelepi et al. 2020 – Tzelepi, V., Zeneli, M., Kourkoumpas, D.-S., Karampinis, E., Gypakis, A., Nikolopoulos, N. and Grammelis, P. 2020. Biomass Availability in Europe as an Alternative Fuel for Full Conversion of Lignite Power Plants: A Critical Review. Energies 13(13), DOI: 10.3390/en13133390.
 
24.
Valvez et al. 2021 – Valvez, S., Maceiras, A., Santos, P. and Reis, P.N.B. 2021. Olive Stones as Filler for Polymer-Based Composites: A Review. Materials 14(4), DOI: 10.3390/ma14040845.
 
25.
Wojtko et al. 2021 – Wojtko, P., Gaze, B., Knutel, B., Wacławek, A., Bukowski, P. and Romański, L. 2021. The use of catalytic additives for the combustion of sunflower husk pellets in a low-power boiler (Zastosowanie dodatków katalitycznych do spalania pelletu z łuski słonecznika w kotle małej mocy). Przemysł Chemiczny 5, pp. 90–94, DOI: 10.15199/62.2021.5.8 (in Polish).
 
26.
Wzorek et al. 2021 – Wzorek, M., Junga, R., Yilmaz, E. and Bozhenko, B. 2021. Thermal Decomposition of Olive-Mill Byproducts: A TG-FTIR Approach. Energies 14(14), DOI: 10.3390/en14144123.
 
27.
Yang et al. 2023 – Yang, M., Chen, L., Wang, J., Msigwa, G., Osman, A.I., Fawzy, S., Rooney, D.W. and Yap, P.-S. 2023. Circular economy strategies for combating climate change and other environmental issues. Environmental Chemistry Letters 21, pp. 55–80, DOI: 10.1007/s10311-022-01499-6.
 
eISSN:2720-569X
ISSN:1429-6675
Journals System - logo
Scroll to top