ORIGINAL PAPER
Enhancing energy efficiency in decentralized systems: a comprehensive approach to renewable energy use
 
More details
Hide details
1
Satbayev University, Kazakhstan
 
2
Asfendiyarov Kazakh National Medical University, Kazakhstan
 
 
Submission date: 2024-08-29
 
 
Final revision date: 2025-03-18
 
 
Acceptance date: 2025-04-01
 
 
Publication date: 2025-06-23
 
 
Corresponding author
Saulesh Minazhova   

Satbayev University, Kazakhstan
 
 
Polityka Energetyczna – Energy Policy Journal 2025;28(2):73-90
 
KEYWORDS
TOPICS
ABSTRACT
This article explores the principles of an integrated approach to enhance the efficiency of renewable energy utilization for small-scale, decentralized consumers, with a particular focus on Kazakhstan. The significance of this research lies in addressing the challenges faced by these consumers, including limited financial and technological resources, and proposing solutions that can reduce reliance on centralized energy systems, foster energy autonomy, and minimize environmental impacts. The study employs a multifaceted approach encompassing analytical, classification, functional, statistical, and synthesis methods to assess the effectiveness of renewable energy sources (RES), such as wind and solar power, in decentralized energy systems. Specifically, it identifies Kazakhstan’s potential for wind energy, which exceeds solar energy in capacity, and regions with substantial renewable energy potential, such as Kyzylorda, North Kazakhstan, and Zhambyl. The economic assessments indicate that wind and solar power are cost-effective, with the electricity produced from wind stations being particularly competitive. The findings emphasize the potential for wind and solar power to meet a substantial proportion of the electricity demand in various regions, with wind farms having the capacity to satisfy entire regional needs. The study concludes that an integrated approach that combines technological, economic, and social factors can substantially enhance energy efficiency, decrease environmental footprints, and contribute to the sustainable development of local communities.
FUNDING
This research has been funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan, Grant No. BR21882294.
CONFLICT OF INTEREST
The Authors have no conflicts of interest to declare.
METADATA IN OTHER LANGUAGES:
Polish
Zwiększanie efektywności energetycznej w systemach zdecentralizowanych: kompleksowe podejście do wykorzystania energii odnawialnej
zrównoważone systemy energetyczne, efektywność wykorzystania energii wiatrowej i słonecznej, regionalny potencjał odnawialny, autonomia energetyczna, transformacja w kierunku czystej energii
W niniejszym artykule przeanalizowano zasady zintegrowanego podejścia do zwiększenia efektywności wykorzystania energii odnawialnej przez małych, zdecentralizowanych konsumentów, ze szczególnym uwzględnieniem Kazachstanu. Znaczenie tych badań polega na sprostaniu wyzwaniom stojącym przed tymi konsumentami, w tym ograniczonym zasobom finansowym i technologicznym, oraz zaproponowaniu rozwiązań, które mogą zmniejszyć zależność od scentralizowanych systemów energetycznych, wspierać autonomię energetyczną i minimalizować wpływ na środowisko. W badaniu zastosowano wieloaspektowe podejście obejmujące metody analityczne, klasyfikacyjne, funkcjonalne, statystyczne i syntezy w celu oceny efektywności odnawialnych źródeł energii (OZE), takich jak energia wiatrowa i słoneczna, w zdecentralizowanych systemach energetycznych. W szczególności zidentyfikowano potencjał Kazachstanu w zakresie energii wiatrowej, który przewyższa moc energii słonecznej, oraz regiony o znacznym potencjale energii odnawialnej, takie jak Kyzylorda, Północny Kazachstan i Zhambyl. Oceny ekonomiczne wskazują, że energia wiatrowa i słoneczna są opłacalne, a energia elektryczna wytwarzana przez elektrownie wiatrowe jest szczególnie konkurencyjna. Wyniki podkreślają potencjał energii wiatrowej i słonecznej do zaspokojenia znacznej części zapotrzebowania na energię elektryczną w różnych regionach, przy czym farmy wiatrowe mogą zaspokoić całe regionalne potrzeby. W badaniu stwierdzono, że zintegrowane podejście łączące czynniki technologiczne, ekonomiczne i społeczne może znacznie zwiększyć efektywność energetyczną, zmniejszyć wpływ na środowisko i przyczynić się do zrównoważonego rozwoju lokalnych społeczności.
REFERENCES (29)
1.
Ahmad et al. 2021 – Ahmad, T., Zhang, D., Huang, C., Zhang, H., Dai, N., Song, Y. and Chen, H. 2021. Artificial intelligence in sustainable energy industry: Status Quo, challenges and opportunities. Journal of Cleaner Production 289, DOI: 10.1016/j.jclepro.2021.125834.
 
2.
Aliyev, T. and Aliyeva, Sh. 2022. Economic forecast of further development for oil suppliers to world markets against the background of the development of renewable energy sources. Scientific Horizons 25(7), pp. 123–132, DOI: 10.48077/scihor.25(7).2022.123-132.
 
3.
Assanovet et al. 2021 – Assanov, D., Zapasnyi, V. and Kerimray, A. 2021. Air quality and industrial emissions in the cities of Kazakhstan. Atmosphere 12(3), DOI: 10.3390/atmos12030314.
 
4.
Bourcet, C. 2020. Empirical determinants of renewable energy deployment: A systematic literature review. Energy Economics 85, DOI: 10.1016/j.eneco.2019.104563.
 
5.
Bulatov, A. and Neshina, Y.G. 2020. Prospects for the development of wind energy in Kazakhstan. Bulatov Readings 6, pp. 67–69.
 
6.
Chege et al. 2020 – Chege, S.M., Wang, D. and Suntu, S.L. 2020. Impact of information technology innovation on firm performance in Kenya. Information Technology for Development 26(2), pp. 316–345, DOI: 10.1080/02681102.2019.1573717.
 
7.
Chen et al. 2021– Chen, Y.K., Jensen, I.G., Kirkerud, J.G. and Bolkesjø, T.F. 2021. Impact of fossil-free decentralized heating on Northern European renewable energy deployment and the power system. Energy 219, DOI: 10.1016/j.energy.2020.119576.
 
8.
Demir et al. 2024 – Demir, A., Dinçer, A.E., Çiftçi, C., Gülçimen, S., Uzal, N. and Yilmaz, K. 2024. Wind farm site selection using GIS-based multicriteria analysis with Life cycle assessment integration. Earth Science Informatics 17, pp. 1591–1608, DOI: 10.1007/s12145-024-01227-4.
 
9.
Gernaat et al. 2021 – Gernaat, D.E.H.J., de Boer, H.S., Daioglou, V., Yalew, S.G., Müller, C. and van Vuuren, D.P. 2021. Climate change impacts on renewable energy supply. Nature Climate Change 11(2), pp. 119–125, DOI: 10.1038/s41558-020-00949-9.
 
10.
Guliyev, F. 2023. Renewable energy targets and policies in traditional oil-producing countries: A comparison of Azerbaijan and Kazakhstan. Journal of Eurasian Studies 15(1), pp. 110–124, DOI: 10.1177/187936652311777.
 
11.
Hannan et al. 2020 – Hannan, M.A., Faisal, M., Ker, P.J., Begum, R.A., Dong, Z.Y. and Zhang, C. 2020. Review of optimal methods and algorithms for sizing energy storage systems to achieve decarbonization in microgrid applications. Renewable and Sustainable Energy Reviews 131, DOI: 10.1016/j.rser.2020.110022.
 
12.
Hoang, A.T. and Nguyen, X.P. 2021. Integrating renewable sources into energy system for smart city as a sagacious strategy towards clean and sustainable process. Journal of Cleaner Production 305, DOI: 10.1016/j.jclepro.2021.127161.
 
13.
International Energy Agency. 2021. Kazakhstan energy profile. [Online] https://www.iea.org/reports/ka... [Accesseed: 2025-02-15].
 
14.
Kozhageldi et al. 2022 – Kozhageldi, B.Zh., Tulenbayev, Zh.S., Orynbayev, S., Kuttybaev, G., Abdlakhatova, N. and Minazhova, S. 2022. Development of integrated solutions for the decentralisation of electricity supply to power-hungry regions. The Electricity Journal 35(4), DOI: 10.1016/j.tej.2022.107108.
 
15.
Mahmud et al. 2020 – Mahmud, K., Khan, B., Ravishankar, J., Ahmadi, A. and Siano, P. 2020. An internet of energy framework with distributed energy resources, prosumers and small-scale virtual power plants: An overview. Renewable and Sustainable Energy Reviews 127, DOI: 10.1016/j.rser.2020.109840.
 
16.
Melnyk et al. 2020 – Melnyk, L., Derykolenko, O., Mazin, Yu., Matsenko, O. and Piven, V. 2020. Modern trends in the development of renewable energy: The experience of the EU and the leading countries of the world. Mechanism of Economic Regulation 3(89), pp. 117–133, DOI: 10.21272/mer.2020.89.09.
 
17.
Minazhova et al. 2023 – Minazhova, S., Akhambayev, R., Shalabayev, T., Bekbayev, A., Kozhageldi, B. and Tvaronavičienė, M. 2023. A review on solar energy policy and current status: Top 5 countries and Kazakhstan. Energies 16(11), DOI: 10.3390/en16114370.
 
18.
Ministry of Energy of the Republic of Kazakhstan. 2023. Development of renewable energy sources. [Online] https://www.gov.kz/memleket/en... [Accesseed: 2025-02--15].
 
19.
Nurlanova et al. 2021 – Nurlanova, N.K., Alzhanova, F.G. and Satpayeva, Z.T. 2021. Quality of urban space as a factor of Almaty’s sustainable economic development. Economics: The Strategy and Practice 16(2), pp. 5–20, DOI: 10.51176/1997-9967-2021-2-5-20.
 
20.
Pablo-Romero et al. 2021 – Pablo-Romero, M.P., Sánchez-Braza, A. and Galyan, A. 2021. Renewable energy use for electricity generation in transition economies: Evolution, targets and promotion policies. Renewable and Sustainable Energy Reviews 138, DOI: 10.1016/j.rser.2020.110481.
 
21.
Panayiotis et al. 2020 – Panayiotis, G.C., Hanias, M., Kourtis, E., Kourtis, M. 2020. Data envelopment analysis (DEA) and financial ratios: A pro-stakeholders’ view of performance measurement for sustainable value creation of the wind energy. International Journal of Economics and Business Administration VIII(2), pp. 326–350, DOI: 10.35808/ijeba/465.
 
22.
Petuchov et al. 2023 – Petuchov, Yu.V., Kibarin, A.A., Korobkov, M.S., Umyshev, D.R. 2023. The issue of the application of cryogenic energy storage. Bulletin of Almaty University of Energy and Communications 1(60), pp. 6–18, DOI: 10.51775/2790-0886_2023_60_1_6.
 
23.
Sadykov et al. 2024 – Sadykov, M., Temirbaeva, N., Narymbetov, M., Toktonaliev, B. and Nariev, Z. 2024. Comparative analysis of the efficiency of hydro, wind, and solar power plants in Kyrgyzstan. Machinery & Energetics 15(2), pp. 106–117, DOI: 10.31548/machinery/2.2024.106.
 
24.
Smatayeva et al. 2024 – Smatayeva, A., Temerbulatova, Z. and Kakizhanova, T. 2024. The impact of economic and environmental factors on the consumption of renewable energy: The case of Kazakhstan. Eurasian Journal of Economic and Business Studies 68(4), pp. 61–75, DOI: 10.47703/ejebs.v68i4.443.
 
25.
Temirbaeva et al. 2024 – Temirbaeva, N., Sadykov, M., Osmonov, Zh., Osmonov, Y. and Karasartov, U. 2024. Renewable energy sources in Kyrgyzstan and energy supply to rural consumers. Machinery & Energetics 15(3), pp. 22–32, DOI: 10.31548/machinery/3.2024.22.
 
26.
Temirgaliyeva, N. and Junussova, M. 2020. Renewable electricity production and sustainability of the national and regional power systems of Kazakhstan. Silk Road: A Journal of Eurasian Development 2(1), pp. 35–53, DOI: 10.16997/srjed.15.
 
27.
Tulegenova, A.A. 2020. Energy supply potential of the Kazakhstan regions with the use of renewable energy sources. Alternative Energy and Ecology 31–33, pp. 72–80.
 
28.
United Nations Framework Convention on Climate Change. 2015. Paris Agreement. [Online] https://unfccc.int/resource/do....
 
29.
Zhumatova, A.A. and Orynbasarov, E.T. 2021. A study of the efficiency of using energy systems based on renewable energy sources for the traction power supply system Kazakhstan. [In:] Proceedings of the 2nd International Scientific and Practical Internet Conference “Ways of Science Development in Modern Crisis Conditions”. Dnipro: WayScience, pp. 262–266.
 
eISSN:2720-569X
ISSN:1429-6675
Journals System - logo
Scroll to top