ORIGINAL PAPER
Innovative fixed-axle Savonius wind turbine for enhanced efficiency and durability
More details
Hide details
1
Satbayev University, Kazakhstan
2
Eurasian Technological University, Kazakhstan
Submission date: 2025-03-11
Final revision date: 2025-06-03
Acceptance date: 2025-06-05
Publication date: 2025-09-30
Polityka Energetyczna – Energy Policy Journal 2025;28(3):51-78
KEYWORDS
TOPICS
ABSTRACT
This study aimed to develop and evaluate the effectiveness of a new Savonius wind turbine scheme featuring a vertical fixed axle, which offers advantages in reducing metal intensity and operating time. The study employed theoretical analysis of existing wind turbine designs, a fixed-axle modular design, and aerodynamic modeling of the rotor profile to enhance the plant’s efficiency. As a result of the study, a new scheme of a Savonius wind turbine with a vertical fixed axle was developed. The proposed design helped significantly reduce the metal intensity of the plant by approximately 30%, resulting in lower manufacturing costs. The absence of a rotating shaft and its replacement with a fixed axle resulted in a reduction of friction in the support, thereby increasing the plant’s efficiency. Dynamic forces on the structure were also reduced, contributing to longer bearing life. The proposed design reduced metal consumption by approximately 1.5 times, resulting in a 35% reduction in production costs. Less frequent maintenance, once every two years instead of every six months, reduces operating costs by up to 40%. Reduced friction in the bearings and reduced dynamic loads increase reliability and extend bearing life by 25%. All in all, these factors increase the financial efficiency and competitiveness of the turbine in the renewable energy market. The practical benefits of the research for stakeholders are that engineers are able to implement simplified and reliable design solutions that reduce bearing loads and increase turbine efficiency.
FUNDING
This research was funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan (Grant No. AP13068313 “Development of a new design of a modular wind turbine with a fixed vertical axle”).
CONFLICT OF INTEREST
The Authors have no conflicts of interest to declare.
METADATA IN OTHER LANGUAGES:
Polish
Projekt i badanie nowego schematu turbiny wiatrowej Savonius z pionową osią stałą
zużycie metalu, tarcie, siły dynamiczne, łożyskowanie, klimat kontynentalny
W artykule ukazano badanie przeprowadzone w celu opracowania i oceny skuteczności nowego schematu turbiny wiatrowej Savonius z pionową osią stałą, która ma zalety w zmniejszaniu intensywności metalu i czasu pracy. Zastosowano metody analizy teoretycznej istniejących konstrukcji turbin wiatrowych, modułową konstrukcję osi stałej oraz modelowanie aerodynamiczne profilu wirnika w celu poprawy wydajności elektrowni. W wyniku badań opracowano nowy schemat turbiny wiatrowej Savonius z pionową osią stałą. Zaproponowany projekt pomógł znacznie zmniejszyć metalochłonność elektrowni o około 30%, co obniżyło koszty produkcji. Brak obracającego się wału i zastąpienie go stałą osią spowodowało zmniejszenie tarcia we wsporniku, co zwiększyło wydajność elektrowni. Zmniejszono również siły dynamiczne działające na konstrukcję, co przyczyniło się do wydłużenia żywotności łożysk. Wykazano, że nowy projekt turbiny wiatrowej jest łatwiejszy w produkcji, bardziej niezawodny i opłacalny niż konwencjonalne pionowe farmy wiatrowe. Dzięki tym ulepszeniom nowy system jest bardziej konkurencyjny i możliwy do zastosowania w klimacie kontynentalnym. Stwierdzono również, że zastosowanie stałej osi zmniejsza zużycie podpór łożysk, zwiększając ich żywotność. Konstrukcja stałej osi zmniejszyła obciążenie dolnych podpór, co zmniejszyło uszkodzenia mechaniczne i poprawiło ogólną niezawodność systemu. Badanie potwierdziło, że ta turbina wiatrowa jest lepiej przystosowana do warunków z intensywnymi wiatrami i częstymi zmianami kierunku wiatru, co czyni ją szczególnie wydajną w regionach o klimacie kontynentalnym.
REFERENCES (53)
1.
Al-Gburi et al. 2022 – Al-Gburi, K.A.H., Alnaimi, F.B.I., Al-Quraishi, B.A., Tan, E.S. and Maseer, M.M. 2022. A comparative study review: The performance of Savonius-type rotors. Materials Today: Proceedings 57, pp. 343–349, DOI: 10.1016/j.matpr.2021.09.226.
2.
Azizov et al. 2019 – Azizov, T.N., Kochkarev, D.V. and Galinska, T.A. 2019. New design concepts for strengthening of continuous reinforced-concrete beams. IOP Conference Series: Materials Science and Engineering 708(1), DOI: 10.1088/1757-899X/708/1/012040.
3.
Barnes et al. 2021 – Barnes, A., Marshall-Cross, D. and Hughes, B.R. 2021. Towards a standard approach for future vertical axis wind turbine aerodynamics research and development. Renewable and Sustainable Energy Reviews 148, DOI: 10.1016/j.rser.2021.111221.
4.
Bencoova et al. 2021 – Bencoova, B., Grosos, B., Gomory, R. and Bacova, M. 2021. Use of biogas plants on a national and international scale. Acta Montanistica Slovaca 26(1), pp. 139–148, DOI: 10.46544/AMS.v26i1.12.
5.
Berest, M. and Sablina, N. 2024. Evaluation of the effectiveness of strategic and tactical controlling based on the analysis of the company’s financial reports. Development Management 23(1), pp. 8–18, DOI: 10.57111/devt/1.2024.08.
6.
Çelik et al. 2021 – Çelik, İ., Yıldız, C. and Şekkeli, M. 2021. Wind power plant layout optimization using particle swarm optimization. Turkish Journal of Engineering 5(2), pp. 89–94, DOI: 10.31127/tuje.698856.
7.
Chaudhuri et al. 2022 – Chaudhuri, A., Datta, R., Kumar, M.P., Davim, J.P. and Pramanik, S. 2022. Energy conversion strategies for wind energy system: Electrical, mechanical and material aspects. Materials 15(3), DOI: 10.3390/ma15031232.
8.
Costa et al. 2021 – Costa, Á.M., Orosa, J.A., Vergara, D. and Fernández-Arias, P. 2021. New Tendencies in wind energy operation and maintenance. Applied Sciences 11(4), Doi: 10.3390/app11041386.
9.
Dorel et al. 2021 – Dorel, S.F., Mihai, G.A. and Nicusor, D. 2021. Review of specific performance parameters of vertical wind turbine rotors based on the SAVONIUS type. Energies 14(7), DOI: 10.3390/en14071962.
10.
Eltayesh et al. 2023 – Eltayesh, A., Castellani, F., Natili, F., Burlando, M. and Khedr, A. 2023. Aerodynamic upgrades of a Darrieus vertical axis small wind turbine. Energy for Sustainable Development 73, pp. 126–143, DOI: 10.1016/j.esd.2023.01.018.
11.
Fan et al. 2021 – Fan, W., Huang, L., Cong, B., Tan, Z. and Xing, T. 2021. Research on an optimization model for wind power and thermal power participating in two-level power market transactions. International Journal of Electrical Power & Energy Systems 134, DOI: 10.1016/j.ijepes.2021.107423.
12.
Fasihi et al. 2021 – Fasihi, M., Weiss, R., Savolainen, J. and Breyer, C. 2021. Global potential of green ammonia based on hybrid PV-wind power plants. Applied Energy 294, DOI: 10.1016/j.apenergy.2020.116170.
13.
Gu et al. 2024 – Gu, Y.F., Duan, X.Q., Xu, Y.W., Shi, Y., Zhu, M., Feng, X.D., Zhang, W.Z. and Korzhyk, V. 2024. Preparation of ultra-thick, crack-free, titanium nitride coatings using a full-domain power-modulated laser. Journal of Manufacturing Processes 113, pp. 346–359, DOI: 10.1016/j.jmapro.2024.01.079.
14.
Guo et al. 2022 – Guo, Y., Wang, H. and Lian, J. 2022. Review of integrated installation technologies for offshore wind turbines: Current progress and future development trends. Energy Conversion and Management 255, DOI: 10.1016/j.enconman.2022.115319.
15.
Guryanova, L. and Chernova, N. 2019. Metals futures market: A comparative analysis of investment and arbitrage strategies. Development Management 18(4), pp. 42–54, DOI: 10.21511/dm.17(4).2019.04.
16.
Iskenderov et al. 2024 – Iskenderov, U., Khachaturian, O., Cruz, D.T., Oviedo, G. and Pavlovskyi, S. 2024. Improving thermal comfort and energy saving in buildings using advanced optimal configuration approaches for heating structures and panels. Architecture Image Studies 5(2), pp. 96–111, DOI: 10.48619/ais.v5i2.1000.
17.
Jang et al. 2022 – Jang, D., Kim, K., Kim, K.H. and Kang, S. 2022. Techno-economic analysis and Monte Carlo simulation for green hydrogen production using offshore wind power plant. Energy Conversion and Management 263, DOI: 10.1016/j.enconman.2022.115695.
18.
Kaverin et al. 2024 – Kaverin, V., Nurmaganbetova, G., Em, G., Issenov, S., Tatkeyeva, G. and Maussymbayeva, A. 2024. Combined Wind Turbine Protection System. Energies 17(20), DOI: 10.3390/en17205074.
19.
Kerimkhulle et al. 2022 – Kerimkhulle, S., Azieva, G., Saliyeva, A. and Mukhanova, A. 2022. Estimation of the volume of production of turbine vapor of a fuel boiler with stochastic exogenous factors. E3S Web of Conferences 339, DOI: 10.1051/e3sconf/202233902006.
20.
Korzhik, V.N. 1992. Theoretical analysis of the conditions required for rendering metallic alloys amorphous during gas-thermal spraying. II. Phase formation during solification of the sprayed material. Soviet Powder Metallurgy and Metal Ceramics 31(10), pp. 826–830.
21.
Kravtsova et al. 2024 – Kravtsova, D., Ziuhan, U. and Fraimovych, A. 2024. Solar panels’ energy efficiency optimisation using mathematical methods with computerisation of calculations. Journal of Kryvyi Rih National University 22(2), pp. 68–72, DOI: 10.31721/2306-5451-2024-2-22-68-72.
22.
Kunitskii et al. 1988 – Kunitskii, Y.A., Bespalov, Y.A. and Korzhik, V.N. 1988. Structural heterogeneities in amorphous materials from a Ni-Nb alloy. Soviet Powder Metallurgy and Metal Ceramics 27(10), pp. 763–767, DOI: 10.1007/BF00802767.
23.
Li et al. 2022 – Li, J., Li, Z., Jiang, Y. and Tang, Y. 2022. Typhoon resistance analysis of offshore wind turbines: A review. Atmosphere 13(3), DOI: 10.3390/atmos13030451.
24.
Mardoyan, A., and Braun, P. 2014. Analysis of Czech subsidies for solid biofuels. International Journal of Green Energy 12(4), pp. 405–408, DOI: 10.1080/15435075.2013.841163.
25.
Marinić-Kragić et al. 2022 – Marinić-Kragić, I., Vučina, D. and Milas, Z. 2022. Global optimization of Savonius-type vertical axis wind turbine with multiple circular-arc blades using validated 3D CFD model. Energy 241, DOI: 10.1016/j.energy.2021.122841.
26.
Mu et al. 2022 – Mu, Z., Tong, G., Xiao, Z., Deng, Q., Feng, F., Li, Y. and Arne, G.V. 2022. Study on aerodynamic characteristics of a Savonius wind turbine with a modified blade. Energies 15(18), DOI: 10.3390/en15186661.
27.
Neupane et al. 2022 – Neupane, D., Kafle, S., Karki, K.R., Kim, D.H. and Pradhan, P. 2022. Solar and wind energy potential assessment at provincial level in Nepal: Geospatial and economic analysis. Renewable Energy 181, pp. 278–291, DOI: 10.1016/j.renene.2021.09.027.
29.
Prentkovskis et al. 2010 – Prentkovskis, O., Beljatynskij, A., Juodvalkiene, E. and Prentkovskiene, R. 2010. A study of the deflections of metal road guardrail post. Baltic Journal of Road and Bridge Engineering 5(2), pp. 104–109, DOI: 10.3846/bjrbe.2010.15.
30.
Pryor, S.C. and Barthelmie, R.J. 2021. A Global assessment of extreme wind speeds for wind energy applications. Nature Energy 6(3), pp. 268–276, DOI: 10.1038/s41560-020-00773-7.
31.
Qawaqzeh et al. 2020 – Qawaqzeh, M.Z., Szafraniec, A., Halko, S., Miroshnyk, O. and Zharkov, A. 2020. Modelling of a household electricity supply system based on a wind power plant. Przegląd Elektrotechniczny 96(11), pp. 36–40, DOI: 10.15199/48.2020.11.08.
32.
Razminienė et al. 2021 – Razminienė, K., Vinogradova, I. and Tvaronavičienė, M. 2021. Clusters in transition to circular economy: Evaluation of relation. Acta Montanistica Slovaca 26(3), pp. 455–465, DOI: 10.46544/AMS.v26i3.06.
33.
Rediske et al. 2021 – Rediske, G., Burin, H.P., Rigo, P.D., Rosa, C.B., Michels, L. and Siluk, J.C.M. 2021. Wind power plant site selection: A systematic review. Renewable and Sustainable Energy Reviews 148, DOI: 10.1016/j.rser.2021.111293.
34.
Ren et al. 2021 – Ren, Z., Verma, A.S., Li, Y., Teuwen, J.J. and Jiang, Z. 2021. Offshore wind turbine operations and maintenance: A state-of-the-art review. Renewable and Sustainable Energy Reviews 144, DOI: 10.1016/j.rser.2021.110886.
36.
Saad et al. 2021 – Saad, A.S., Elwardany, A., El-Sharkawy, I.I., Ookawara, S. and Ahmed, M. 2021. Performance evaluation of a novel vertical axis wind turbine using twisted blades in multi-stage Savonius rotors. Energy Conversion and Management 235, DOI: 10.1016/j.enconman.2021.114013.
37.
Savin, V. and Kirichenko, P. 2024. Efficient use of ground heat exchangers in energy-saving ventilation. Journal of Kryvyi Rih National University 22(1), pp. 83–88, DOI: 10.31721/2306-5451-2024-1-58-83-89.
38.
Shende et al. 2022 – Shende, V., Patidar, H., Baredar, P. and Agrawal, M. 2022. A review on comparative study of savonius wind turbine rotor performance parameters. Environmental Science and Pollution Research 29(46), pp. 69176–69196, DOI: 10.1007/s11356-022-22399-w.
39.
Shields et al. 2021 – Shields, M., Beiter, P., Nunemaker, J., Cooperman, A. and Duffy, P. 2021. Impacts of turbine and plant upsizing on the levelized cost of energy for offshore wind. Applied Energy 298, DOI: 10.1016/j.apenergy.2021.117189.
40.
Shoraben et al. 2022 – Shorabeh, S.N., Firozjaei, H.K., Firozjaei, M.K., Jelokhani-Niaraki, M., Homaee, M. and Nematollahi, O. 2022. The site selection of wind energy power plant using GIS-multi-criteria evaluation from economic perspectives. Renewable and Sustainable Energy Reviews 168, DOI: 10.1016/j.rser.2022.112778.
41.
Shymko, V. and Slipych, О. 2024. The use of innovative solutions and VR-technologies in architectural design and construction. Mining Journal of Kryvyi Rih National University 58(1), pp. 110–114, DOI: 10.31721/2306-5435-2024-1-112-110-114.
42.
Singh et al. 2023 – Singh, N., Boruah, D., de Kooning, J.D.M., de Waele, W. and Vandevelde, L. 2023. Impact assessment of dynamic loading induced by the provision of frequency containment reserve on the main bearing lifetime of a wind turbine. Energies 16(6), DOI: 1996-1073/16/6/2851.
43.
Sivak et al. 2024 – Sivak, R., Kulykivskyi, V., Savchenko, V., Sukmaniuk, O. and Borovskyi, V. 2024. Application of resource-saving extrusion technologies and an integrated approach to assessing the plasticity of metal parts in agricultural engineering. Machinery & Energetics 15(2), pp. 21–32, DOI: 10.31548/machinery/2.2024.21.
44.
Tong et al. 2021 – Tong, D., Farnham, D.J., Duan, L., Zhang, Q., Lewis, N.S., Caldeira, K. and Davis, S.J. 2021. Geophysical constraints on the reliability of solar and wind power worldwide. Nature Communications 12(1), DOI: 10.1038/s41467-021-26355-z.
45.
Tryhuba et al. 2022 – Tryhuba, A., Hutsol, T., Kuboń, M., Tryhuba, I., Komarnitskyi, S., Tabor, S., Kwaśniewski, D., Mudryk, K., Faichuk, O., Hohol, T. and Tomaszewska-Górecka, W. 2022. Taxonomy and Stakeholder Risk Management in Integrated Projects of the European Green Deal. Energies 15(6), DOI: 10.3390/en15062015.
46.
Udo et al. 2024 – Udo, W.S., Kwakye, J.M., Ekechukwu, D.E. and Ogundipe, O.B. 2024. Optimizing wind energy systems using machine learning for predictive maintenance and efficiency enhancement. Computer Science & IT Research Journal 4(3), pp. 386–397, DOI: 10.51594/csitrj.v4i3.1398.
47.
Vychuzhanin, V. and Vychuzhanin, A. 2025. Using ChatGPT for the intelligent diagnostics of complex technical systems. Bulletin of Cherkasy State Technological University 30(1), 68–79, DOI: 10.62660/bcstu/1.2025.68.
48.
Wang et al. 2022 – Wang, W., Xue, Y., He, C. and Zhao, Y. 2022. Review of the typical damage and damage-detection methods of large wind turbine blades. Energies 15(15), DOI: 10.3390/en15155672.
49.
Wilberforce et al. 2023 – Wilberforce, T., Olabi, A.G., Sayed, E.T., Alalmi, A.H. and Abdelkareem, M.A. 2023. Wind turbine concepts for domestic wind power generation at low wind quality sites. Journal of Cleaner Production 394, DOI: 10.1016/j.jclepro.2023.136137.
50.
Xu et al. 2021 – Xu, W., Li, Y., Li, G., Li, S., Zhang, C. and Wang, F. 2021. High-resolution numerical simulation of the performance of vertical axis wind turbines in urban area: Part II, array of vertical axis wind turbines between buildings. Renewable Energy 176, pp. 25–39, DOI: 10.1016/j.renene.2021.05.011.
51.
Yao et al. 2022 – Yao, X., Wang, X., Xu, Z. and Skare, M. 2022. Bibliometric analysis of the energy efficiency research. Acta Montanistica Slovaca 27, pp. 505–521, DOI: 10.46544/AMS.v27i2.17.
52.
Zakharova et al. 2025 – Zakharova, I., Shchetynin, S., Shchetynina, V., Zusin, A. and Volenko, I. 2025. Use of robotic and automated systems in welding and restoration of parts. Machinery & Energetics 16(1), 117–129, DOI: 10.31548/machinery/1.2025.117.
53.
Zhang et al. 2021 – Zhang, Y., Li, R. and Zhang, J. 2021. Optimization scheme of wind energy prediction based on artificial intelligence. Environmental Science and Pollution Research 28(29), pp. 39966–39981, DOI: 10.1007/s11356-021-13516-2.