ORIGINAL PAPER
Simulation of a hybrid solar-hydro-biomass energy system with hydrogen storage for optimal energy demand fulfillment
 
 
More details
Hide details
1
New and Renewable Energy, University of Mosul, Iraq
 
 
Submission date: 2025-04-15
 
 
Final revision date: 2025-06-04
 
 
Acceptance date: 2025-06-05
 
 
Publication date: 2025-09-30
 
 
Corresponding author
Mustafa Hussein   

New and Renewable Energy, University of Mosul, Iraq
 
 
Polityka Energetyczna – Energy Policy Journal 2025;28(3):79-98
 
KEYWORDS
TOPICS
ABSTRACT
The intermittency of natural renewable energy sources poses a significant challenge to supplying electricity in rural areas that rely on standalone renewable energy systems. Although battery storage is often used to address this issue, it has several limitations, especially in hot climate regions where performance and longevity are compromised. Ensuring reliable and accessible electricity in these areas is essential for promoting economic development and improving quality of life. This study aims to develop a novel hybrid power system to provide a sustainable and dependable energy solution, that integrates solar photovoltaic (PV), micro-hydro, biomass, and hydrogen storage in one hybrid system, where this specific combination has not been explored in previous literature. After conducting a comprehensive field survey to evaluate the available natural resources and design the system, the proposed model was subsequently simulated in HOMER Pro software. The testing results indicated a high degree of compatibility between the tested energy sources, with each one contributing well to an ongoing year-round energy supply. The largest shares were solar PV 64.8% and micro-hydro 24.3%. Biomass and hydrogen storage both accounted for 6% and 5%, respectively, particularly in periods when other sources were not available. The lessons learned from these findings offer valuable input for shaping future energy policy and represent a consultable kit to be used in similar areas, as well as a direction for the next stages of the hybridization process on advanced energy systems for further research.
FUNDING
This research was funded by University of Mosul.
CONFLICT OF INTEREST
The Author has no conflicts of interest to declare.
METADATA IN OTHER LANGUAGES:
Polish
Symulacja hybrydowego systemu energetycznego wykorzystującego energię słoneczną, wodną i biomasę z magazynowaniem wodoru w celu optymalnego zaspokojenia zapotrzebowania na energię
hybryda, HOMER Pro, energia wodna, biomasa, magazynowanie wodoru
Niestabilność naturalnych źródeł energii odnawialnej stanowi poważne wyzwanie dla dostaw energii elektrycznej na obszarach wiejskich, które są uzależnione od samodzielnych systemów energii odnawialnej. Chociaż często stosuje się magazynowanie energii w bateriach, aby rozwiązać ten problem, ma ono kilka ograniczeń, zwłaszcza w regionach o gorącym klimacie, gdzie wydajność i trwałość są ograniczone. Zapewnienie niezawodnej i dostępnej energii elektrycznej na tych obszarach ma kluczowe znaczenie dla promowania rozwoju gospodarczego i poprawy jakości życia. Niniejsze badanie ma na celu opracowanie nowatorskiego hybrydowego systemu energetycznego, który zapewni zrównoważone i niezawodne rozwiązanie energetyczne, integrując fotowoltaikę słoneczną (PV), mikroelektrownie wodne, biomasę i magazynowanie wodoru w jednym systemie hybrydowym. Ta konkretna kombinacja nie była dotychczas badana w literaturze przedmiotu. Po przeprowadzeniu kompleksowych badań terenowych w celu oceny dostępnych zasobów naturalnych i zaprojektowania systemu, proponowany model został następnie zasymulowany w oprogramowaniu HOMER Pro. Wyniki testów wykazały wysoki stopień kompatybilności między badanymi źródłami energii, z których każde w znacznym stopniu przyczyniało się do ciągłego zaopatrzenia w energię przez cały rok. Największy udział miały energia słoneczna PV (64,8%) i mikroelektrownie wodne (24,3%). Biomasa i magazynowanie wodoru stanowiły odpowiednio 6 i 5%, szczególnie w okresach, gdy inne źródła były niedostępne. Wnioski wyciągnięte z tych ustaleń stanowią cenny wkład w kształtowanie przyszłej polityki energetycznej i stanowią zestaw konsultacyjny, który można wykorzystać w podobnych obszarach, a także kierunek dla kolejnych etapów procesu hybrydyzacji zaawansowanych systemów energetycznych do dalszych badań.
REFERENCES (33)
1.
Al-Hafidh, M.S. and Ibrahem, M.H. 2013. Hybrid power system for residential load. In 2013 International Conference on Electrical Communication, Computer, Power, and Control Engineering (ICECCPCE), pp. 70–75, DOI: 10.1109/ICECCPCE.2013.6998737.
 
2.
Allouhi, A. 2024. A hybrid PV/wind/battery energy system to assist a run-of-river micro-hydropower for clean electrification and fuelling hydrogen mobility for young population in a rural Moroccan site. Journal of Cleaner Production 442, DOI: 10.1016/j.jclepro.2024.140852.
 
3.
Ariae et al. 2019 – Ariae, A.R., Jahangiri, M., Fakhr, M.H. and Shamsabadi, A.A. 2019. Simulation of Biogas Utilization Effect on The Economic Efficiency and Greenhouse Gas Emission: A Case Study in Isfahan, Iran. International Journal of Renewable Energy Development 8(2), pp. 149–160, DOI: 10.14710/ijred.8.2.149-160.
 
4.
Arifin et al. 2023 – Arifin, Z., Insani, V.F.S., Idris, M., Hadiyati, K.R., Anugia, Z. and Irianto, D. 2023. Techno-economic analysis of co-firing for pulverized coal boilers power plant in Indonesia. International Journal of Renewable Energy Development 12(2), pp. 261–269, DOI: 10.14710/ijred.2023.48102.
 
5.
Assouo et al. 2025 – Assouo, T., Lontsi, F., Boupda, O., Koholé, Y.W. and Njitacke, Z.T. 2025. Modeling and techno-economic study of a hybrid renewable energy power plant for electrification in rural areas with an equatorial climate. Energy 320, DOI: 10.1016/j.energy.2025.134983.
 
6.
Babu, M.K. and Ray, P. 2023. Sensitivity analysis, optimal design, cost and energy efficiency study of a hybrid forecast model using HOMER pro. Journal of Engineering Research 11(2), DOI: 10.1016/j.jer.2023.100033.
 
7.
Basnet et al. 2023 – Basnet, S., Deschinkel, K., Le Moyne, L. and Péra, M.C. 2023. A review on recent standalone and grid integrated hybrid renewable energy systems: System optimization and energy management strategies. Renewable Energy Focus 46, pp. 103–125, DOI: 10.1016/j.ref.2023.06.001.
 
8.
Bhimaraju et al. 2024 – Bhimaraju, A., Sushnigdha, G., Mahesh, A. and Raman, K. 2024. Techno-Economic Optimization of Hybrid Renewable Energy System for the Fueling of City Transportation. [In:] 2024 IEEE 4th International Conference on Sustainable Energy and Future Electric Transportation (SEFET), pp. 1–6, DOI: 10.1109/SEFET61574.2024.10718003.
 
9.
Ceglia et al. 2023 – Ceglia, F., Marrasso, E., Roselli, C. and Sasso, M. 2023. Energy and environmental assessment of a biomass-based renewable energy community including photovoltaic and hydroelectric systems. Energy 282, DOI: 10.1016/j.energy.2023.128348.
 
10.
Chen et al. 2025 – Chen, Y., Bao, A., Li, Y., Xiang, Y., Cai, W., Xia, Z., Li, J., Ning, M., Sun, J., Zhang, H., Sun, X. and Wei, X. 2025. A Novel Multi-Source Data-Driven Energy Consumption Prediction Model for Venlo-Type Greenhouses in China. Smart Agricultural Technology 10, DOI: 10.1016/j.atech.2025.100825.
 
11.
Dewi et al. 2025 – Dewi, T., Risma, P., Oktarina, Y., Dwijayanti, S., Mardiyati, E.N., Sianipar, A.B., Hibrizi, D.R., Azhar, M.S. and Linarti, D. 2025. Smart integrated aquaponics system: Hybrid solar-hydro energy with deep learning forecasting for optimized energy management in aquaculture and hydroponics. Energy for Sustainable Development 85, DOI: 10.1016/j.esd.2025.101683.
 
12.
Dong, C. and Zhong, Q. 2025. Evaluating solar photovoltaic potential of buildings based on the installation parameters of photovoltaic modules. Solar Energy 288, DOI: 10.1016/j.solener.2025.113304.
 
13.
Efremov, C. and Kumarasamy, S. 2025. Optimisation of Microgrid by HOMER Pro Software Design: Innovative Approach and Performance Evaluation. International Journal of Engineering and Technology (IJET) 1(1), pp. 120–130. [Online:] https://e-journal.scholar-publ... [Accessed: 2025-05-20].
 
14.
Google Earth 2024. Karse Village, Iraq. Google. [Online:] https://earth.google.com/ [Accessed: 2025-05-20].
 
15.
Guimarãesa et al. 2024 – Guimarãesa, A.D.A.B., Bastosb, A.S., de Faria Vianaa, E.M., Mendesc, V.F. and Martineza, C.B. 2024. Implementation of pumped hydro/photovoltaic systems in mining-degraded areas: a case study in Quadrilátero Ferrífero, Minas Gerais, Brazil. International Journal of Renewable Energy Development 13(4), pp. 639–653, DOI: 10.61435/ijred.2024.60005.
 
16.
Hassane et al. 2022 – Hassane, A.I., Didane, D.H., Tahir, A.M., Mouangue, R.M., Tamba, J.G. and Hauglustaine, J.M. 2022. Comparative analysis of hybrid renewable energy systems for off-grid applications in chad. International Journal of Renewable Energy Development 11(1), pp. 49–62, DOI: 10.14710/ijred.2022.39012.
 
17.
HOMER Pro. 2025. [Online:] https://homerenergy.com/produc.... [Accessed: 2025-04-06].
 
18.
Hüner, B. 2025. Feasibility and environmental analysis of biogas-based hybrid energy system using HOMER pro software: A case study for Hatay. Energy Conversion and Management 326, DOI: 10.1016/j.enconman.2025.119480.
 
19.
Ibrahim et al. 2024 – Ibrahim, M.H., Ibrahim, M.A. and Khather, S.I. 2024. Hydrogen solar pump in nocturnal irrigation: A sustainable solution for arid environments. Energy Conversion and Management 304, DOI: 10.1016/j.enconman.2024.118219.
 
20.
Ibrahim, M.H. and Ibrahim, M.A. 2022. Modelling and analysis of SA-SPV system with bi-directional inverter for lighting load. Przegląd Elektrotechniczny 5(98), DOI: 10.35784/iapgos.6369.
 
21.
Jagtap et al. 2019 – Jagtap, R.S., Waghmare, P.M., Kulkarni, V.V., Hake, P.V., Kundankar, R.R. and Ramgirwar, S.S. 2019. Simulation of PV–Bio–Hydro–Battery Connected Hybrid Power System for Rural Area. Simulation 6(05). [Online:] https://www.irjet.net/archives... [Accessed: 2025-05-15].
 
22.
Katsivelakis et al. 2021 – Katsivelakis, M., Bargiotas, D., Daskalopulu, A., Panapakidis, I.P. and Tsoukalas, L. 2021. Techno-economic analysis of a stand-alone hybrid system: Application in Donoussa Island, Greece. Energies 14(7), DOI: 10.3390/en14071868.
 
23.
Khalil et al. 2021 – Khalil, L., Bhatti, K.L., Awan, M.A.I., Riaz, M., Khalil, K. and Alwaz, N. 2021. Optimization and designing of hybrid power system using HOMER pro. Materials Today: Proceedings 47, pp. S110–S115, DOI: 10.1016/j.matpr.2020.06.054.
 
24.
Khather et al. 2024 – Khather, S.I., Ibrahim, M.A. and Ibrahim, M.H. 2024. PID controller for a bearing angle control in self-driving vehicles. Journal of Robotics and Control (JRC) 5(3), pp. 647–654, DOI: 10.18196/jrc.v5i3.21612.
 
25.
Maggu et al. 2025 – Maggu, P., Singh, S., Sinha, A., Biamba, C.N., Iwendi, C. and Hashmi, A. 2025. Sustainable and optimized power solution using hybrid energy system. Energy Exploration & Exploitation 43(2), pp. 526–563, DOI: 10.1177/01445987241284689.
 
26.
Most, T. and Will, J. 2024. Sensitivity analysis using the Metamodel of Optimal Prognosis. arXiv preprint arXiv:2408.03590, DOI: 10.48550/arXiv.2408.03590.
 
27.
Oladeji et al. 2021 – Oladeji, A.S., Akorede, M.F., Aliyu, S., Mohammed, A.A. and Salami, A.W. 2021. Simulation-Based Optimization of Hybrid Renewable Energy System for Off-grid Rural Electrification. International Journal of Renewable Energy Development 10(4), DOI: 10.14710/ijred.2021.31316.
 
28.
Osalade et al. 2022 – Osalade, A., Abe, A., Adebanji, B., Fasina, T., Adeleye, S.A. and Omotoso, T. 2022. Feasibility Study and Techno-Economic Analysis of Solar PV-Biomass Hybrid Power System: A Case Study of Kajola village. Nigeria. European Journal of Energy Research 2(4), pp. 32–38, DOI: 10.24018/ejenergy.2022.2.4.71.
 
29.
Palej et al. 2019 – Palej, P., Qusay, H., Kleszcz, S., Hanus, R. and Jaszczur, M. 2019. Analysis and optimisation of the hybrid renewable energy system. Polityka Energetyczna – Energy Policy Journal 22(2), pp. 107–120, DOI: 10.33223/epj/109911.
 
30.
Rodríguez-Gallegos et al. 2025 – Rodríguez-Gallegos, C.D., Gandhi, O., Rodríguez-Gallegos, C.A. and Alvarez-Alvarado, M.S. 2025. Co-Location Potential of Floating PV with Hydropower Plants: Case Study in Ecuador. In Solar 5(1), p. 3, DOI: 10.3390/solar5010003.
 
31.
Said et al. 2024 – Said, T.R., Kichonge, B. and Kivevele, T. 2024. Optimal design and analysis of a grid‐connected hybrid renewable energy system using HOMER Pro: A case study of Tumbatu Island, Zanzibar. Energy Science & Engineering 12(5), pp. 2137–2163, DOI: 10.1002/ese3.1735.
 
32.
The Atmospheric Science Data Center (ASDC) 2025. [Online:] https://www.earthdata.nasa.gov [Accessed: 2025-04-06].
 
33.
Tulu et al. 2022 – Tulu, T.K., Atnaw, S.M., Bededa, R.D., Wakshume, D.G. and Ancha, V.R. 2022. Kinetic modeling and optimization of biomass gasification in bubbling fluidized bed gasifier using response surface method. International Journal of Renewable Energy Development 11(4), DOI: 10.14710/ijred.2022.45179.
 
eISSN:2720-569X
ISSN:1429-6675
Journals System - logo
Scroll to top