Investigation of the accumulation of mercury by fluidized bed boiler fly ashes
 
More details
Hide details
 
Polityka Energetyczna – Energy Policy Journal 2009;12(2):285–293
 
KEYWORDS
ABSTRACT
The paper contains results of experimental investigations associated with determination of mercury concentration in fly ash samples from Polish fluidized bed boilers fired with hard and brown coals. The results indicate that the finer the fly ash particles the more unburned carbon and mercury they contain. A correlation between the concentrations of unburned carbon and mercury has been demonstrated. The investigations re. the mercury leaching from the fly ash samples indicate that over 70% of atomic mercury that has been adsorbed by the fly ash particles is not leached but remains within the particles.
METADATA IN OTHER LANGUAGES:
Polish
Badania akumulacji rtęci w popiołach lotnych z kotłów fluidalnych
kotły fluidalne, popiół lotny, adsorpcja rtęci
W pracy przedstawiono wyniki badań zawartości rtęci w próbkach popiołu lotnego z kotłów fluidalnych opalanych węglem kamiennym i brunatnym. W oparciu o uzyskane wyniki stwierdzono, że im drobniejsza jest frakcja ziaren popiołu lotnego, tym więcej zawiera ona części palnych oraz rtęci. Wyniki badań wskazują na istnienie korelacji między zawartością części palnych, a zawartością rtęci. Przeprowadzone badania wymywania zaadsorbowanej w popiołach lotnych Hg0 wykazały, że ponad 70% rtęci atomowej jest trwale zaadsorbowane na ziarnach popiołu.
 
REFERENCES (13)
1.
Report on UN Environment Programme: Global mercury assessment, Geneve, 2002.
 
2.
LAMBORG C.H., FITZGERALD W.F., O’DONNELL J., TORGERSEN T., 2002 – A non-steady-state compartmental model of global-scale mercury bio geochemistry with interhemispheric atmospheric gradients. Geochim Cosmochim. Acta 66 (7), 1105–1118.
 
3.
DASTOOR A.P., LAROCQUE Y., 2004 – Global circulation of atmospheric mercury: a modeling study. Atmos. Environ. 38, 147–161.
 
4.
GALE T., LANI B., OFFEN G., 2008 – Mechanisms governing the fate of mercury in coal-fired power systems, Fuel Processing Technology 89, 139–151.
 
5.
LEE S. J., SOE Y.-C, JANG H.-N., PARK K.-S., BAEK J.-I., AN H.-S., SONG K.-C., 2006 – Speciation and mass distribution ofmercury in a bituminous coal-fired power plant, Atmospheric Environment 40, 2215–2224.
 
6.
GALBREATH K.C., ZYGARLICKE C.J., 2000 – Mercury transformations in coal combustion flue gas, Fuel Processing Technology, 65–66.
 
7.
FURIMSKY E., 2000 – Characterization of trace element emissions from coal combustion by equilibrium calculations, Fuel Processing Technology, 63.
 
8.
WANG Y., DUAN Y., YANG L., ZHAO C., SHEN X., ZHANG M., ZHOU Y., CHEN C., 2009 – Experimental study on mercury transformation and removal in coal-?red boiler ?ue gases, Fuel Processing Technology 90, 643–651,.
 
9.
IWASHITA A., TANAMACHI S., NAKAJIMA T., TAKANASHI H., OHKI A., 2004 – Removal of mercury from coal by mild pyrolysis and leaching behavior of mercury, Fuel, 83.
 
10.
SLOSS L., 1995 – Mercury emissions and effects-the role of coal, IEAPER 19.
 
11.
CHU P., PORCELLA D.B., 1995 – Mercury stack emissions from US electric utility power plants, water. Air Soil Pollut. 80, 136–144.
 
12.
PAVLISH J.H., SONDREAL E.A., MANN M.D., OLSON E.S., GALBREATH K.C., LADAL D.L., BENSON S.A., 2003 – Status review of mercury control options for coal-fired power plants. Fuel Process. Technol. 82, 89–165,.
 
13.
ZHANG L., ZHUO Y., CHEN L., XU X., CHEN C., 2008 – Mercury emissions from six coal-fired power plants in China, Fuel Processing Technology 89, 1033–1040.
 
ISSN:1429-6675