Management of surplus electricity production from
unstable renewable energy sources using Power
to Gas technology
More details
Hide details
1
Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Kraków, Poland
Publication date: 2018-12-31
Polityka Energetyczna – Energy Policy Journal 2018;21(4):43-64
KEYWORDS
ABSTRACT
Increasing the share of energy production from renewable sources (RES) plays a key role in the
sustainable and more competitive development of the energy sector. Among the renewable energy
sources, the greatest increase can be observed in the case of solar and wind power generation. It
should be noted that RES are an increasingly important elements of the power systems and that their
share in energy production will continue to rise. On the other hand the development of variable generation
sources (wind and solar energy) poses a serious challenge for power systems as operators
of unconventional power plants are unable to provide information about the forecasted production
level and the energy generated in a given period is sometimes higher than the demand for energy
in all of the power systems. Therefore, with the development of RES, a considerable amount of the
generated energy is wasted. The solution is energy storage, which makes it possible to improve the
management of power systems. The objective of this article is to present the concept of electricity
storage in the form of the chemical energy of hydrogen (Power to Gas) in order to improve the
functioning of the power system in Poland.
The expected growth in the installed capacity of wind power plants will result in more periods
in which excess energy will be produced. In order to avoid wasting large amounts of energy, the
introduction of storage systems is necessary. An analysis of the development of wind power plants
demonstrates that the Power to Gas concept can be developed in Poland, as indicated by the estimated
installed capacity and the potential amount of energy to be generated. In view of the above, the
excess electricity will be available for storage in the form of chemical energy of hydrogen, which in turn can be used to supply gas distribution networks, generate electricity during periods of increased
electricity demand, or to refuel vehicles.
METADATA IN OTHER LANGUAGES:
Polish
Zagospodarowanie nadwyżki produkcji energii elektrycznej
z niestablinych odnawialnych źródeł energii z wykorzystaniem
technologii Power to Gas
energetyka wiatrowa, Power to Gas, magazynowanie energii
Zwiększenie udziału produkcji energii ze źródeł odnawialnych (OZE) odgrywa kluczową rolę w zrównoważonym
i bardziej konkurencyjnym rozwoju sektora energii. Wśród odnawialnych źródeł energii największy
wzrost można zaobserwować w przypadku wytwarzania energii słonecznej i wiatrowej. Należy zauważyć,
że OZE są coraz ważniejszym elementem systemów elektroenergetycznych i że ich udział w produkcji
energii będzie nadal wzrastał. Z drugiej strony rozwój niestabilnych źródeł wytwarzania (elektrowni
wiatrowych i fotowoltaiki) stanowi poważne wyzwanie dla systemów energetycznych, ponieważ operatorzy
niekonwencjonalnych elektrowni nie są w stanie dostarczyć informacji o prognozowanym poziomie produkcji,
a zapotrzebowanie na energię elektryczną jest często niższe od ilości energii wytworzonej w danym
okresie. Dlatego wraz z rozwojem OZE tracona jest znaczna część wytworzonej energii. Rozwiązaniem jest
magazynowanie energii, co pozwoliłoby na usprawnienie zarządzania systemami energetycznymi. Celem niniejszego
artykułu jest przedstawienie koncepcji magazynowania energii elektrycznej w postaci energii chemicznej
wodoru (Power to Gas) w celu poprawy funkcjonowania systemu elektroenergetycznego w Polsce. W związku z oczekiwanym wzrostem mocy zainstalowanej w elektrowniach wiatrowych należy się spodziewać,
że w systemie będzie coraz więcej okresów, w których wytwarzana będzie nadwyżka energii.
Aby uniknąć marnowania dużych ilości energii, konieczne jest wprowadzenie systemów magazynowania
energii. Analiza rozwoju elektrowni wiatrowych pokazuje, że koncepcja Power to Gas może być rozwijana
w Polsce, o czym świadczy szacowana moc zainstalowana i potencjalna ilość energii do wygenerowania.
W związku z nadwyżką energii elektrycznej będzie dostępna do magazynowania w postaci energii
chemicznej wodoru, która z kolei może być wykorzystana do zasilania sieci dystrybucyjnych gazu, wytwarzania
energii elektrycznej w okresach zwiększonego zapotrzebowania na energię elektryczną lub do
tankowania pojazdów.
REFERENCES (79)
2.
Ahern et al. 2015 – Ahern, E.P., Deane, P., Persson, T., Gallachóir, B.O. and Murphy, J. D. 2015. A perspective on the potential role of renewable gas in a smart energy island system. Renewable Energy 78, pp. 648–656.
3.
Akinyele, D.O. and Rayudu, R.K. 2014. Review of energy storage technologies for sustainable power networks. Sustainable Energy Technologies and Assessments 8, pp. 74–91.
4.
Ancona et al. 2016 – Ancona, M.A., Antonini, G., Branchini, L., De Pascale, A., Melino, F., Orlandini, V., Antonuci, V. and Ferraro, M. 2016. Renewable Energy Storage System Based on a Power-to-Gas Conversion Process. Energy Procedia 101, pp. 854–861.
7.
Bai et al. 2014 – Bai, M., Song, K., Sun, Y., He, M., Li, Y. and Sun, J. 2014. An overview of hydrogen underground storage technology and prospects in China. Journal of Petroleum Science and Engineering 124, pp. 132–136.
8.
Balan et al. 2016 – Balan, M., Badea, A., Buga, M.R. and Ciocian, A. 2016. Power-to-gas: Development of analysis framework based on Romanian case study. University Polytechnic of Bucharest Scientific Bulletin 78(3), pp. 217–226.
11.
Castillo, A. and Gayme, D.F. 2014. Grid-scale energy storage applications in renewable energy integration: A survey. Energy Conversion and Management 87, pp. 885–894.
18.
EC 2006–2007. Towards a European Strategic Energy Technology Plan. European Commission.
28.
Fraunhofer ISE. H2Move – solar hydrogen filling station (H2Move – Solare Wasserstoff – Tankstelle). [Online]
https://www.h2move.de/ [Accessed: 2018-09-2012] (in German).
30.
Gahleitner, G. 2013. Hydrogen from renewable electricity: An international review of power-to-gas pilot plants for stationary applications. International Journal of Hydrogen Energy 38(5), pp. 2039–2061.
31.
Gammon et al. 2006 – Gammon, R., Roy, A., Barton, J. and Little, M. 2006. Hydrogen and Renewables Integration. [Online]
http://ieahydrogen.org/pdfs/HA... [Accessed: 2018-09-20].
32.
Garcia, D.A. 2017. Analysis of non-economic barriers for the deployment of hydrogen technologies and infrastructures in European countries. International Journal of Hydrogen Energy 42(10), pp. 6435–6447.
33.
Gas Natura lfenosa and Hydrogenics. Xermade – Sotavento Project. [Online]
http://www.sotaventogalicia. com/en/projects/system-generation-and-energy-storage-form-hydrogen [Accessed: 2018-09-20].
35.
Götz et al. 2016 – Götz, M., Lefebvre, J., Mörs, F., McDaniel Koch, A., Graf, F., Bajohr, S., Reimert, R. and Kolb, T. 2016. Renewable Power-to-Gas: A Technological and Economic Review. Renewable Energy 85, pp. 1371–1390.
37.
Grueger et al. 2017 – Grueger, F., Möhrke, F., Robinius, M. and Stolten, D. 2017. Early power to gas applications: Reducing wind farm forecast errors and providing secondary control reserve. Applied Energy 192, pp. 551–562.
38.
Guandalini et al. 2017 – Guandalini, G., Robinius, M., Grube, T., Campanari, S. and Stolten, D. 2017. Long-term power-to-gas potential from wind and solar power: A country analysis for Italy. International Journal of Hydrogen Energy 42(19), pp. 13389–13406.
44.
IEA 2018. Renewables Information: Overwiew 2018. International Energy Information, Paris.
47.
ITM Power 2016. ITM Electrolyser for UK National Grid P2G HyDeploy Consortium. Full Cells Bulletin 12, pp. 11.
48.
Jiang et al. 2012 – Jiang, R., Wang, J., and Guan, Y. 2012. Robust unit commitment with wind power and pumped storage hydro. IEEE Transactions on Power Systems 27(2), pp. 800–810.
49.
Kötter et al. 2016 – Kötter, E., Schneider, L., Sehnke, F., Ohnmeiss, K. and Schröer, R. 2016. The future electric power system: Impact of Power-to-Gas by interacting with other renewable energy components. Journal of Energy Storage 5, pp. 113–119.
50.
Leonzio, G. 2017. Design and feasibility analysis of a Power-to-Gas plant in Germany. Journal of Cleaner Production 162, pp. 609–623.
51.
Lewandowska-Bernat, A. and Desideri, U. 2017. Opportunities of Power-to-Gas technology. EnergProcedia 105, pp. 4569–4574.
52.
LTT. Utilization of CO2 as a carbon building block using predominantly regenerative (Verwertung von CO2 Als Kohlenstoff-Baustein Unter Verwendung Überwiegend Regenerativer Energie) [Online] http:// www.ltt.rwth-aachen.de/cms/LTT/Forschung/Forschung-am-LTT/Model-Based-Fuel-Design/Abgeschlossene-Projekte/~kpty/Verwertung-von-CO2-als-Kohlenstoff-Baust/?lidx=1 [Accessed: 2018-09-20] (in German).
54.
MG 2010. The national action plan for renewable energy souces (Krajowy plan działania w zakresie energii ze źródeł odnawialnych). Minister Gospodarki – MG (Minister of Economy). Online:
http://www.oze.utp.edu.pl/plik... [Accessed 3.07.2018] 0(in Polish).
57.
Paulus, J. Power-to-Gas – increasing hydrogen tolerance in the gas network (Power-to-Gas – Erhöhung Der Wasserstofftoleranz Im Gasnetz). [Online]
http://www.stadtwerkhassfurt.d... [Accessed: 2018-09-20] (in German).
58.
Piskowska-Wasiak, J. 2017. Experiences and perspectives of Power to Gas technology (Doświadczenia i perspektywy procesu Power to Gas). Nafta – Gaz vol. 73, no. 8, pp. 597–604 (in Polish).
59.
Połecki, M. 2017. The influence of ancillary services of wind farms on conventional power plants start-up costs. Rynek Energii 3(103), pp. 27–31.
60.
PSE 2016a. Generation of wind sources (Generacja źródeł wiatrowych). Polskie Sieci Elektroenergetyczne – PSE (Polish Grid Company.) [Online]
https://www.pse.pl/dane-system... [Accessed 01.03.2018] (in Polish).
61.
PSE 2016b. Generation of power units (Generacja mocy Jednostek Wytwórczych). Polskie Sieci Elektroenergetyczne – PSE (Polish Grid Company) [Online]
https://www.pse.pl/dane-system... [Accessed: 01.03.2018] (in Polish).
62.
PSE 2017. Annual coordination plan. (Plan koordynacyjny roczny 2017). Polskie Sieci Energetyczne – PSE (Polish Grid Company). [Online]
https://www.pse.pl/dane-system... [Accessed: 2018-09-07] (in Polish).
65.
Schneider, L. and Kötter, E. 2015. The geographic potential of Power-to-Gas in a German model region-Trier-Amprion 5. Journal of Energy Storage 1(1), pp. 1–6.
68.
Speicher-bar. Alzey – Exytron Null-Emission-Wohnanlage. [Online]
https://exytron.online/downloa... erster ZERO-Emission-Wohnpark-Pilotprojekt Alzey.pdf [Accessed: 2018-09-20].
71.
Stadtwerke Emden GmbH. University of applied sciences Edam/Leer (Hochschule Emden/Leer). [Online]
http://oldweb.hs-emden-leer.de... [Accessed: 2018-09-20] (in German).
72.
Total Deutschland GmbH. Green Hydrogen Hub H2BER. [Online]
http://www.renewableenergyfocu.... com/view/38624/green-hydrogen-facility-opens-at-berlin-airport-with-first-refueling-of-fuel-cell-vehicle/ [Accessed: 2018-09-20].
73.
Ulleberg et al. 2010 – Ulleberg, Ø., Nakken, T. and Eté, A. 2010. The Wind/Hydrogen Demonstration System at Utsira in Norway: Evaluation of System Performance Using Operational Data and Updated Hydrogen Energy System Modeling Tools. International Journal of Hydrogen Energy 35(5), pp. 1841–1852.
74.
URE 2017. National RES potential in figures: the installed capacity (Potencjał krajowy OZE w liczbach: moc zainstalowana) Urząd Regulacji Energetyki – URE (The Energy Regulatory Office). [Online]
https://www.ure.gov.pl/pl/rynk... [Accessed: 2018-09-07] (in Polish).
75.
Ursua et al. 2012 – Ursua, A., Gandia, L.M. and Sanchis, P. 2012. Hydrogen Production From Water Electrolysis: Current Status and Future Trends. Proceedings of the IEEE 100(2), pp. 410–426.
78.
Wassertoff–Forschungszentrum Brandenburgische Technische Universität Cottbus. H2-Forschungszentrum Der BTU Cottbus. [Online]
http://www.powertogas.info/pow... [Accessed: 2018-09-20].
79.
Wind–Wasserstoff–projekt GmbH & Co. KG. RH2 PTG Innovation and Demonstration Project. [Online]
http://www.rh2-ptg.de/en/ [Accessed: 2018-09-20].