ORIGINAL PAPER
On the possibility of the utilization of hydrogen sulfide from the Black Sea
More details
Hide details
1
Hydroaerodynamic and Hydraulic Machines, Technical University of Sofia, Bulgaria
3
Technical University of Sofia, Bulgaria
Submission date: 2023-03-30
Final revision date: 2023-04-18
Acceptance date: 2023-04-18
Publication date: 2023-06-19
Corresponding author
Rositsa Velichkova
Hydroaerodynamic and Hydraulic Machines, Technical University of Sofia, Bulgaria
Polityka Energetyczna – Energy Policy Journal 2023;26(2):183-194
KEYWORDS
TOPICS
ABSTRACT
Looking for alternative sources of energy to generate electricity has been a hot topic for society for a very long time. The need to replace current energy resources such as fuel, oil, and gas is increasing, and the replacement comes from energy obtained from the wind, sun, and sea waves. In many cases, valuable raw materials can be obtained in addition to energy production, while having a significant environmental effect simultaneously.
The shortage of energy and raw material resources in many countries stimulates the growth of interest in all potential sources of energy – solar, wind, wave, tidal – has lead to accelerating the demand for oil and gas, shale gas, as well as the expansion of the areas for the cultivation of technical crops for biofuels. Classical energy resources like oil, gas and coal are serious polluters of the natural environment. Especially harmful is the release of carbon dioxide and sulfur oxides during the exploitation of these resources.
A significant energy raw material potential of non-traditional resources lies in the waters and bottom of the Black Sea, which is a natural geobiotechnological reactor, capable of producing a variety of energy raw resources.
This paper discusses the use of hydrogen sulfide available in the Black Sea waters to produce energy and useful industrial products and proposes the respective. The technology also has an ecological effect in terms of the purification of the hydrogen sulfide pool. The paper also discusses some technologies for the separation of hydrogen sulfide to hydrogen and sulfur. An estimation of the heat value of hydrogen sulfide in the water of the Black Sea is also presented.
METADATA IN OTHER LANGUAGES:
Polish
O możliwości wykorzystania siarkowodoru z Morza Czarnego
Morze Czarne, wykorzystanie H2S
Poszukiwanie alternatywnych źródeł energii do produkcji energii elektrycznej od dawna jest gorącym tematem w społeczeństwie. Konieczność zastąpienia obecnych źródeł energii, takich jak paliwo, ropa naftowa i gaz, jest coraz większa, a pochodzi ono z energii pozyskiwanej z wiatru, słońca i fal morskich. W wielu przypadkach, oprócz produkcji energii, można pozyskać cenne surowce, mając jednocześnie znaczący wpływ na środowisko.
Niedobór surowców energetycznych i surowcowych w wielu krajach stymuluje wzrost zainteresowania wszystkimi potencjalnymi źródłami energii – słońcem, wiatrem, falami, pływami – doprowadził do przyspieszenia popytu na ropę i gaz, gaz łupkowy, a także ekspansji powierzchni pod uprawę roślin technicznych na biopaliwa. Klasyczne źródła energii, takie jak ropa naftowa, gaz i węgiel, poważnie zanieczyszczają środowisko naturalne. Szczególnie szkodliwe jest wydzielanie się dwutlenku węgla i tlenków siarki podczas eksploatacji tych zasobów.
Znaczący potencjał surowcowy energii nietradycyjnych zasobów tkwi w wodach i dnie Morza Czarnego, które jest naturalnym reaktorem geobiotechnologicznym, zdolnym do produkcji różnorodnych surowców energetycznych.
W artykule omówiono wykorzystanie siarkowodoru dostępnego w wodach Morza Czarnego do produkcji energii i użytecznych produktów przemysłowych oraz zaproponowano odpowiednie rozwiązania. Technologia ma również efekt ekologiczny w zakresie oczyszczania basenu siarkowodoru. W artykule omówiono również niektóre technologie rozdziału siarkowodoru na wodór i siarkę. Przedstawiono również oszacowanie wartości opałowej siarkowodoru w wodach Morza Czarnego.
REFERENCES (20)
1.
Baul et al. 2018 – Baul, T.K., Datta, D. and Alam, A. 2018. A comparative study on household level energy consumption and related emissions from renewable (biomass) and non-renewable energy sources in Bangladesh. Energy Policy 114, pp. 598–608, DOI: 10.1016/j.enpol.2017.12.037.
2.
Bhattacharya et al. 2000 – Bhattacharya, S.C., Salam, P.A. and Sharma, M. 2000. Emissions from biomass energy use in some selected Asian countries. Energy 25(2), pp. 169–188, DOI: 10.1016/S0360-5442(99)00065-1.
3.
Budnik, V. and Chernyi, S. 2016. Future Development of the World Ocean Mining for the Industry. Procedia Engineering 150, pp. 2150–2156, DOI: 10.1016/j.proeng.2016.07.256.
4.
Demirbas, A. 2006. Electricity generation via unconventional methods. Energy Exploration & Exploitation 24(1–2), pp. 131–138.
5.
Dimitrov et al. 2003 – Dimitrov, D., Genov, I. and Kozhuharov, E. 2003. Alternative raw materials and energy resources from the bottom of the Black Sea. Proceedings of the Institute of Oceanology 3, pp. 42–50 (in Bulgarian).
6.
Etarski, S.I. 1994. Electrical part of power plants. Sofia: Technique.
7.
Kostov, K. 2020. Determination of technical and economic indicators of thermal power stations directly from the turbine regime characteristics. EUREKA: Physics and Engineering 4, pp. 51–59, DOI: 10.21303/2461-4262.2020.001358.
8.
Krystev, N. 2021. Multiplying the Effect of Nitrogen Oxides Reduction under Vortex Burner Conditions at Gas Fuel Injection. 6th International Symposium on Environment-Friendly Energies and Applications, (EFEA) 1–4, DOI: 10.1109/EFEA49713.2021.9406255.
9.
Lansche, J. and Müller, J. 2017. Life cycle assessment (LCA) of biogas versus dung combustion household cooking systems in developing countries – A case study in Ethiopia. Journal of Cleaner Production 165, pp. 828–835.
10.
Lide, D.R. 2016. CRC Handbook of chemistry and physics (Internet version 96th).
11.
MacCarty, N.A. and Bryden, K.M. 2016. An integrated systems model for energy services in rural developing communities. Energy 113, pp. 536–557, DOI: 10.1016/j.energy.2016.06.145.
12.
Maksymova, E. and Kostrytska, S. 2018. Geological and structural prerequisites of gas-bearing capacity and gas hydrate formation in the World Ocean (in terms of the Black Sea). Journal of Geology, Geography and Geoecology 27(2), pp. 294–304, DOI: 10.15421/111853.
13.
Myasnikova et al. 2019 – Myasnikova, O.Y., Lysytska, S.M., Shcherbakova, N.S., Shamsheev, S.V., Spitsyna, T.A. and Kubasova, E.I. 2019. Ecological Approach in Managing the Technology of Oil Refineries. International Journal of Energy Economics and Policy 9(3), pp. 165–171, DOI: 10.32479/ijeep.7734.
15.
Ngene et al. 2016 – Ngene, S., Tota-Maharaj, K., Eke, P. and Hills, C. 2016. Environmental and economic impacts of crude oil and natural gas production in developing countries. International Journal of Economy, Energy and Environment 1(3), pp. 64–73, DOI: 10.11648/j.ijeee.20160103.13.
16.
Nyrkov et al. 2016 – Nyrkov, A., Budnik, V., Sokolov, S. and Chernyi, S. 2016. The Algorithm of Development the World Ocean Mining of the Industry During the Global Crisis. [In:] IOP Conference Series: Materials Science and Engineering 142(1), DOI: 10.1088/1757-899X/142/1/012121.
17.
Rubright et al. 2017 – Rubright, S.L.M., Pearce, L.L. and Peterson, J. 2017. Environmental toxicology of hydrogen sulfide. Nitric oxide: biology and chemistry 71, pp. 1–13, DOI: 10.1016/j.niox.2017.09.011.
18.
Ushakov, V.Y. 2018. Unconventional (alternative) methods of electric energy production. [In:] Electrical Power Engineering. Green Energy and Technology, pp. 241–256, DOI: 10.1007/978-3-319-62301-6_9.
19.
Varbanov et al. 2016 – Varbanov, V., Agontsev, E., Velichkova, R. and Uzunova, M. 2016. Development of a hydrogen sulfide plant. [In:] 4th International Symposium on Environmental Friendly Energies and Applications (EFEA), pp. 1–4, IEEE.
20.
Velichkova et al. 2018 – Velichkova, R., Markov, D., Simova, I., Stankov, P., Ketipov, Z., Petrova, T., Naydenova, I., Angelova, R.A. and Wierling, A.H. 2018. Utilization of Hydrogen Sulfide from Biogas Installation. [In:] 5th International Symposium on Environment-Friendly Energies and Applications (EFEA), pp. 1–5, IEEE.