ORIGINAL PAPER
Economic efficiency of using digestate from biogas plants in Ukraine when growing agricultural crops as a way of achieving the goals of the European Green Deal
 
More details
Hide details
1
Ministry of Education and Science of Ukraine
 
2
Vinnytsia National Agrarian University, Ukraine
 
 
Submission date: 2023-03-20
 
 
Final revision date: 2023-04-19
 
 
Acceptance date: 2023-04-19
 
 
Publication date: 2023-06-19
 
 
Corresponding author
Roman Lohosha   

Ministry of Education and Science of Ukraine, Vinnytsia National Agrarian University, Ukraine, Sonyachna 3, 21000, Vinnytsia, Ukraine
 
 
Polityka Energetyczna – Energy Policy Journal 2023;26(2):161-182
 
KEYWORDS
TOPICS
ABSTRACT
This paper presents calculations of the economic indicators of the researched elements of the cul- tivation technology of corn for grain and vegetable crops in Ukraine, which indicate that the cultivation of these crops is cost-effective in all variants of the experiment. The research has established that the increase in the economic efficiency of the production of these crops when applying different rates of fertilizers is achieved due to a more significant positive effect of the increase in productivity compared to additional costs associated with the use of these farming practices, while additional costs caused by the use of fertilizers are paid off many times over. It has been proven that the use of mineral fertilizers and their combination with high rates of bio-organic fertilizer (digestate) when growing agricultural crops helps to increase productivity. There have been further developed theoretical and practical provisions regarding the ecological problem of livestock waste disposal, in particular those of pig farms, and agricultural farms, i.e. the provision of organic fertilizers to ensure the yield increase as well as improvement in the quality of agricultural and vegetable crops, so as to make it possible to obtain high-quality products of plant and vegetable production during livestock waste disposal. The proposed approach to the economic assessment of technologies for growing corn for grain and red beet depending on the fertilization system makes it possible to increase the level of productivity of agricultural and vegetable crops with the effective use of bio-organic fertilizers in the modern conditions of sharp increases in the costs of mineral fertilizers.
METADATA IN OTHER LANGUAGES:
Polish
Efektywność ekonomiczna wykorzystania pofermentu z biogazowni na Ukrainie przy uprawie roślin rolniczych jako sposób na osiągnięcie celów Europejskiego Zielonego Ładu
poferment, ścieki, bezpieczeństwo energetyczne, efektywność energetyczna
W artykule przedstawiono obliczenia wskaźników ekonomicznych badanych elementów technologii uprawy kukurydzy na zboża i warzywa na Ukrainie, które wskazują, że uprawa tych roślin jest opłacalna we wszystkich wariantach doświadczenia. W badaniach ustalono, że wzrost efektywności ekonomicznej produkcji tych roślin przy zastosowaniu różnych dawek nawozów osiągany jest dzięki bardziej znaczącemu pozytywnemu efektowi wzrostu produktywności w porównaniu z dodatkowymi kosztami związanymi ze stosowaniem tych praktyk rolniczych, a dodatkowe koszty spowodowane stosowaniem nawozów zwracają się wielokrotnie. Udowodniono, że stosowanie nawozów mineralnych i ich łączenie z wysokimi dawkami nawozu bioorganicznego (pofermentu) przy uprawie roślin rolniczych sprzyja zwiększeniu produktywności. Dopracowano teoretyczne i praktyczne zapisy dotyczące ekologicznego problemu unieszkodliwiania odchodów zwierzęcych, w szczególności ferm trzody chlewnej i gospodarstw rolnych, tj. dostarczania nawozów organicznych zapewniających wzrost plonów oraz poprawę jakości zbiorów rolniczych, tak aby podczas utylizacji odpadów zwierzęcych możliwe było uzyskanie wysokiej jakości roślin i warzyw. Zaproponowane podejście do ekonomicznej oceny technologii uprawy kukurydzy na ziarno i buraka ćwikłowego w zależności od systemu nawożenia umożliwia zwiększenie poziomu produktywności upraw rolniczych i warzywniczych przy efektywnym wykorzystaniu nawozów bioorganicznych we współczesnych warunkach gwałtownego wzrostu kosztów nawozów mineralnych.
 
REFERENCES (89)
1.
Abubaker et al. 2012 – Abubaker, J., Risberg, K. and Pell, M. 2012. Biogas residues as fertilisers – effects on wheat growth and soil microbial activities. Applied Energy 99, pp. 126–134, DOI: 10.1016/j.apenergy.2012.04.050.
 
2.
Abubaker et al. 2015 – Abubaker, J., Risberg, K., Jönsson, E., Dahlin, A.S., Cederlund, H. and Pell, M. 2015. Short-term effects of biogas digestates and pig slurry application on soil microbial activity. Applied and Environmental Soil Science, DOI: doi.org/10.1155/2015/658542.
 
3.
Alburquerque et al. 2012 – Alburquerque, J.A., De la Fuente, C., Campoy, M., Carrasco, L., Nájera, I., Baixauli, C. and Bernal, M.P. 2012. Agricultural use of digestate for horticultural crop production and improvement of soil properties. European Journal of Agronomy 43, pp. 119–128, DOI: 10.1016/j.eja.2012.06.001.
 
4.
Al Seadi, T. and Lukehurst, C. 2012. Quality management of digestate from biogas plants used as fertiliser. IEA Bioenergy 37, 40 pp.
 
5.
Arthurson, V. 2009. Closing the global energy and nutrient cycles through application of biogas residue to agricultural land-potential benefits and drawbacks. Energies 2(2), pp. 226–242, DOI: 10.3390/en20200226.
 
6.
Asp et al. 2022 – Asp, H., Bergstrand, K-J., Caspersen, S. and Hultberg, M. 2022. Anaerobic digestate as peat substitute and fertiliser in pot production of basil. Biological Agriculture & Horticulture 38(4), pp. 247–257, DOI: 10.1080/01448765.2022.2064232.
 
7.
Ayaz et al. 2021 – Ayaz, M., Feizienė, D., Tilvikienė, V., Akhtar, K., Stulpinaitė, U and Iqbal, R. 2021. Biochar role in the sustainability of agriculture and environment. Sustainability 13(3), pp. 1–22, DOI: 10.3390/su13031330.
 
8.
Barzee et al. 2019 – Barzee, T.J., Edalati, A., El-Mashad, H., Wang, D., Scow, K. and Zhang, R. 2019. Digestate biofertilizers support similar or higher tomato yields and quality than mineral fertilizer in a subsurface drip fertigation system. Frontiers in Sustainable Food Systems 3, doi: 10.3389/fsufs.2019.00058.
 
9.
Barłóg et al. 2019 – Barłóg, P., Hlisnikovský, L. and Kunzová, E. 2019. Yield, content and nutrient uptake by winter wheat and spring barley in response to applications of digestate, cattle slurry and NPK mineral fertilizers. Archives of Agronomy and Soil Science 66(11), DOI: 10.1080/03650340.2019.1676890.
 
10.
BIS 2010. Specification for whole digestate, separated liquor and separated fiber derived from the anaerobic digestion of source-segregated biodegradable materials British Standards Institution Publications, PAS 110, London, UK.
 
11.
Brtnicky et al. 2022 – Brtnicky, M., Kintl, A., Holatko, J., Hammerschmiedt, T., Mustafa, A., Kucerik, J., Vitez, T., Prichystalova, J., Baltazar, T. and Elbl, J. 2022. Effect of digestates derived from the fermentation of maize-legume intercropped culture and maize monoculture application on soil properties and plant biomass production. Chemical and Biological Technologies in Agriculture 9, 43, DOI: 10.1186/s40538-022-00310-6.
 
12.
Buligon et al. 2023 – Buligon, E.L., Costa, L.A.M.. de Lucas, J., Jr., Santos, F.T., Goufo, P. and Costa, M.S.S.M. 2023. Fertilizer Performance of a Digestate from Swine Wastewater as Synthetic Nitrogen Substitute in Maize Cultivation: Physiological Growth and Yield Responses. Agriculture 13(3), DOI:10.3390/agriculture13030565.
 
13.
Chernenko, Yu.Yu. 2015. Economic efficiency of the technologies of production of the main open soil vegetable crops. Bulletin of KhNAU. Series: Economic Sciences 4, pp. 109–115.
 
14.
Clements, D.P. and Bihn, E.A. 2019. The Impact of Food Safety Training on the Adoption of Good Agricultural Practices on Farms. Safety and Practice for Organic Food, pp. 321–344, DOI: 10.1016/B978-0-12-812060-6.00016-7.
 
15.
Corden et al. 2019 – Corden, C., Bougas, K., Cunningham, E., Tyrer, D., Kreißig, J. and Crookes, M. 2019. Digestate and Compost as Fertilisers: Risk Assessment and Risk Management Options. European Commission. Wood Environment & Infrastructure Solutions UK Limited: Aberdeen, UK, pp. 121–128. [Online] https://etendering.ted.europa.... [Accessed: 2023-04-03].
 
16.
Datsko, L.V. and Maistrenko, M.I. 2012. Environmental and economic aspects of sustainable land use to reproduce fertile soil. Soil Fertility Protection 8, pp. 24–39.
 
17.
Directive 2008. EC of the European parliament and of the council of 19 November 2008 on waste and repealing certain directives (Waste framework directive, R1 formula in footnote of attachment II). Official J. Eur. Union L, 312, 1–30.
 
18.
Doyeni et al. 2021a – Doyeni, М.О., Stulpinaite, U., Baksinskaite, А., Suproniene, S. and Tilvikiene, V. 2021a. The Effectiveness of Digestate Use for Fertilization in an Agricultural Cropping System. Plants 10(8), pp. 1–13, DOI: 10.3390/plants10081734.
 
19.
Doyeni et al. 2021b – Doyeni, M.O., Stulpinaite, U., Baksinskaite, A., Suproniene, S. and Tilvikiene, V. 2021b. Greenhouse gas emissions in agricultural cultivated soils using animal waste-based digestates for crop fertilization. The Journal of Agricultural Science 159(1–2), pp. 23–30, DOI: 10.1017/S0021859621000319.
 
20.
Doyeni et al. 2022 – Doyeni, М.О., Barcauskaite, K., Buneviciene, K., Venslauskas K., Navickas, K., Rubezius М., Baksinskaite, А., Suproniene, S. and Tilvikiene, V. 2022. Nitrogen flow in livestock waste system towards an efficient circular economy in agriculture. Waste Management & Research: The Journal for a Sustainable Circular Economy 41(3), DOI: 10.1177/0734242X221123484.
 
21.
Draft Law of Ukraine of July 15, 2021. No. 5039 On Amendments to the Law of Ukraine “On Pesticides and Agrochemicals”. [Online] https://ips.ligazakon.net/docu... [Accessed: 2023-03-25].
 
22.
Duque-Acevedo et al. 2020 – Duque-Acevedo, M., Belmonte-Ureña, L.J., Yakovleva, N. and Camacho-Ferre F. 2020. Analysis of the circular economic production models and their approach in agriculture and agricultural waste biomass management. Journal of Environmental Research and Public Health 17, DOI: 10.3390/ijerph17249549.
 
23.
European Commission 2019. Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 laying down rules relating to the making available on the market of EU fertilisers, amending Regulations (EC) No 1069/2009 and (EC) No 1107/ 2009 and repealing the Regulation (Règlement (UE) 2019/1009 du Parlement Européen et du Conseil du 5 juin 2019 établissant les règles relatives à la mise à disposition sur le marché des fertilisants UE, modifant les Règlements (CE) no 1069/2009 et (CE) no 1107/2009 et abrogeant le Règleme) (in French).
 
24.
European Commission 2021. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, EU Soil Strategy for 2030 – Reaping the benefits of healthy soils for people, food, nature and climate.
 
25.
Explanatory note to Draft Law of Ukraine of July 15, 2021. No. 5039 On Amendments to the Law of Ukraine “On Pesticides and Agrochemicals”. [Online] https://ips.ligazakon.net/docu... [Accessed: 2023-03-25].
 
26.
FAO 2011. Crop Prospects and Food Situation: Global Information and Early Warning System on Food and Agriculture; Food and Agriculture Organization of the United Nations: Geneva, Switzerland.
 
27.
Gelaye et al. 2019 – Gelaye, K.K., Zehetner, F., Loiskandl, W. and Klik, A. 2019. Comparison of growth of annual crops used for salinity bioremediation in the semi-arid irrigation area. Plant, Soil and Environment 65(4), pp. 165–171, DOI: 10.17221/499/2018-PSE.
 
28.
Gell et al. 2011 – Gell, K., van Groenigen, J. and Cayuela, M.L. 2011. Residues of bioenergy production chains as soil amendments: immediate and temporal phytotoxicity. Journal of Hazardous Materials 186(2–3), pp. 2017–2025, DOI: 10.1016/j.jhazmat.2010.12.105.
 
29.
Іrandoust, M. 2016. Modelling consumers’ demand for organic food product: the Swedish experience. International Journal of Food and Agricultural Economics (IJFAEC) 4(3), pp. 77–89, DOI: 10.22004/ag.econ.244388.
 
30.
Kabak, K.M. 2018. Ways to increase economic efficiency of crop production at the enterprise. Perspective Directions of Economic Development, Accounting, Management and Law: Theory and Practice 2, pp. 56–65.
 
31.
Kaletnik, G. and Lutkovska, S. 2020. Strategic Priorities of the System Modernization Environmental Safety under Sustainable Development. Journal of Environmental Management and Tourism 5(45), pp. 1124–1131, DOI: 10.14505/jemt.v11.5(45).10.
 
32.
Kaletnik et al. 2020 – Kaletnik, G., Honcharuk, I. and Okhota, Y. 2020. The Waste-free production development for the energy autonomy formation of Ukrainian agricultural enterprises. Journal of Environmental Management and Tourism 11(3), pp. 513–522, DOI: 10.14505//jemt.v11.3(43).02.
 
33.
Kaletnik et al. 2021 – Kaletnik, G., Pryshliak, N. and Tokarchuk, D. 2021. Potential of production of energy crops in Ukraine and their processing on solid biofuels. Ecological Engineering and Environmental Technology 22(3), pp. 59–70, doi: 10.12912/27197050/135447.
 
34.
Kamenshchuk, B.D. 2020. Ways to increase the efficiency of growing corn for grain. Feeds and Feed Production 89, pp. 85–92.
 
35.
Kathijotes et al. 2015 – Kathijotes, N., Petrova, V., Zlatareva, E., Kolchakov, V., Marinova, S. and Ivanov, P. 2015. Impacts of Biogas Digestate on Crop Production and the Environment: A Bulgarian Case Study. American Journal of Environmental Sciences 11(2), pp. 81–89, DOI: 10.3844/ajessp.2015.81.89.
 
36.
Kernasiuk, Yu.V. 2010. Methodological approaches to determining the cost of production and economic efficiency of production of bioenergy disposal of manure (methodical guidelines). Kirovohrad: Kirovohrad Institute of AIP, 24 p.
 
37.
Kirubakarana et al. 2009 – Kirubakarana, V., Sivaramakrishnanb, V., Nalinic, R., Sekard, T., Premalathae, M. and Subramaniane, P. 2009. A review on gasification of biomass. Renewable and Sustainable Energy Reviews 13, pp. 179–186, DOI: 10.1016/j.rser.2007.07.001.
 
38.
Koszel, M. and Lorencowicz, E. 2015. Agricultural use of biogas digestate as a replacement fertilizers. Agriculture and Agricultural Science Procedia 7, pp. 119–124, DOI: 10.1016/j.aaspro. 2015.12.004.
 
39.
Koszel et al. 2016 – Koszel, M., Kocira, A. and Lorencowicz, E. 2016. The evaluation of the use of biogas plant digestate as a fertilizer in alfalfa and spring wheat cultivation. Fresenius Environmental Bulletin 25(8), pp. 3258–3264.
 
40.
Kovalchuk, M.I. 2002. Economic analysis in agriculture: a textbook for independent study of the discipline. Kyiv: KNEU, 282 p.
 
41.
Kovalchuk, O.V. 2018. Economic efficiency of crop production. Development of Economy, Entrepreneurship, Trade and Exchange Activities in the Face of Globalization 15, pp. 58–63.
 
42.
Kovalenko et al. 2010 – Kovalenko, V.P., Khalak, V.I., Nezhlukchenko, T.I. and Papakina, N.S. 2010. Biometric analysis of variability of signs of farm animals and poultry. Kherson: Old-Plus, 240 p.
 
43.
Lamolinara et al. 2022 – Lamolinara, B., Pérez-Martínez, A., Guardado-Yordi, E., Fiallos, C.G., Diéguez-Santana, K. and Ruiz-Mercado, G.J. 2022. Anaerobic digestate management, environmental impacts, and techno-economic challenges. Waste Management 140, pp. 14–30, DOI: 10.1016/j.wasman.2021.12.035.
 
44.
Lee et al. 2020 – Lee, M.E., Steinman, M.W. and Angelo, S.St. 2020. Biogas digestate as a renewable fertilizer: effects of digestate application on crop growth and nutrient composition. Renewable Agric and Food Systems 36(2), pp. 1–9, doi: 10.1017/ S1742170520000186.
 
45.
Liu et al. 2011 – Liu, W.K., Yang, Q.C., Du, L.F., Cheng, R.F. and Zhou, W.L. 2011. Nutrient supplementation increased growth and nitrate concentration of lettuce cultivated hydroponically with biogas slurry. Acta Agriculturae Scandinavica, Section B – Soil & Plant Science 61(5), pp. 391–394, DOI: 10.1080/09064710.2010.482539.
 
46.
Lohosha et al. 2018 – Lohosha, R.V., Pidvalna, O.H. and Krychkovskyi, V.Yu. 2018. Methodology and practices of evaluating the processes of the use and reproduction of soil fertility in vegetable growing. Business Inform Scientific Journal 10, pp. 177–187.
 
47.
Lohosha et al. 2021 – Lohosha, R.V., Mazur, K.V. and Krychkovskyi, V.Yu. 2021. Marketing research of the vegetable market in Ukraine. Monograph, Vinnytsia: “TVORY” LLC. 344.
 
48.
Lohosha et al. 2022 – Lohosha, R.V., Palamarchuk, V.D. and Krychkovskyi, V.Yu. 2022. Economic and bioenergy efficiency of using digestate of biogas plants when growing agricultural and vegetable crops in the conditions of the European integration of Ukraine. Business Inform 9(536), pp. 40–52, Doi: 10.32983/2222-4459-2022-9-40-52.
 
49.
Lošák et al. 2016 – Lošák, T., Hlušek, J., Válka, T., Elbl, J., Vítěz, T., Bělíková, H. and Von Bennewitz, E. 2016. The effect of fertilisation with digestate on kohlrabi yields and quality. Plant Soil and Environment 62(6), pp. 274–278, DOI: 10.17221/16/2016-PSE.
 
50.
Lupenko, Yu.O. and Mesel-Veseliak, V.Ya. 2012. Strategic directions of Ukraine’s agriculture development 2020. Kiev: NSC “IAE”.
 
51.
Makádi et al. 2012 – Makádi, M., Tomócsik, A. and Orosz, V. 2012. Digestate: A New Nutrient Sourse – Review. Biogas, ed. By S. Kumar, Croatia: InTech. pp. 295–310.
 
52.
Makádi et al. 2016 – Makádi, M., Szegi, T., Tomócsik, A., Orosz, V., Micheli, E., Ferenczy, A., Posta, K. and Biró, B. 2016. Impact of digestate application on chemical and microbiological properties of two different textured soils. Communications in Soil Science and Plant Analysis 47(2), pp. 167–178, DOI: 10.1080/00103624.2015.1109652.
 
53.
Mata-Alvarez et al. 2014 – Mata-Alvarez, J., Dosta, J., Romero-Güiza, M.S., Fonoll, X., Peces, M. and Astals, S. 2014. A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renewable and Sustainable Energy Reviews 36, pp. 412–427, DOI: 10.1016/j.rser.2014.04.039.
 
54.
Montemurro et al. 2008 – Montemurro, F., Canali, S., Convertini, G., Ferri, D., Tittarelli, F. and Vitti, C. 2008. Anaerobic digestates application on fodder crops: effects on plant and soil. Agrochimica 52(5), pp. 297–312.
 
55.
Möller, K. and Müller, T. 2012. Effects of anaerobic digestion on digestate nutrient availability and crop growth: a review. Engineering in Life Science 12(3), pp. 242–257, doi: 10.1002/elsc.201100085.
 
56.
Möller, K. and Stinner, W. 2009. Effects of different manuring systems with and without biogas digestion on soil mineral nitrogen content and on gaseous nitrogen losses (ammonia, nitrous oxides). European Journal of Agronomy 30(1), pp. 1–16, DOI: 10.1016/j.eja.2008.06.003.
 
57.
Nepochatenko, O.O. 2012. Business finances. Uman: Sochinskyi, 501 pp.
 
58.
Nkoa, R. 2014. Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: a review. Agronomy for Sustainable Development 34, pp. 473–492, DOI: 10.1007/s13593-013-0196-z.
 
59.
Odlare et al. 2011 – Odlare, M., Arthurson, V., Pell, M., Svensson, K., Nehrenheim, E. and Abubaker, J. 2011. Land application of organic waste – Effects on the soil ecosystem. Applied Energy 88(6), pp. 2210–2218, DOI: 10.1016/j.apenergy.2010.12.043.
 
60.
Palamarchuk, V.D. and Krychkovskyi, V.Yu. 2020. Prospects for the use of digestate to increase the efficiency of biogas complexes. Proceedings of IV International Scientific and Practical Conference “Bioenergy Systems”. May 29, Zhytomyr, pp. 124–128.
 
61.
Panuccio et al. 2021 – Panuccio, M.R., Mallamaci, C., Attinà, E. and Muscolo, A. 2021. Using Digestate as Fertilizer for a Sustainable Tomato Cultivation. Sustainability 13(3), DOI: 10.3390/su13031574.
 
62.
Parkhomets, M.K. and Uniiat, L.M. 2018. Innovative methods of managing corn production in agricultural enterprises (Innovatsionnyye metody upravleniya proizvodstvom kukuruzy v agropredpriyatiyakh). Economic Analysis 28(3), pp. 176–183 (in Russia).
 
63.
Pokhrel et al. 2018 – Pokhrel, B., Sorensen, J.N., Moller, H.B. and Petersen, K.K. 2018. Processing methods of organic liquid fertilizers affect nutrient availability and yield of greenhouse grown parsley. Renewable Agriculture and Food Systems 1–9, doi: 10.1017/S1742170517000771.
 
64.
Popović et al. 2020 – Popović, V., Vučković, S., Jovović, Z., Ljubičić, N., Kostić, M., Rakaščan, N. and Ikanović, J. 2020. Genotype by year interaction effects on soybean morpho-productive traits and biogas production. Genetika 52(3), pp. 1055–1073, DOI: 10.2298/GENSR2003055P.
 
65.
Progressive technologies and standards of costs for growing vegetables 2012. D.I. Mazorenko, L.M. Tishchenko, H. Ye. Mazniev et al.; ed. P.T. Sabluk et al. [2nd ed.]. Kharkiv: Maidan, 339 p.
 
66.
Pryshliak et al. 2020 – Pryshliak, N., Lutsiak, V., Tokarchuk, D. and Semchuk, I. 2020. The Empirical Research of The Potential, Awareness and Current State of Agricultural Waste Use to Ensure Energy Autonomy of Agricultural Enterprises of Ukraine. Journal of Environmental Management and Tourism 11(7), pp. 1634–1648, DOI: 10.14505//jemt.v11.7(47).04.
 
67.
Rakascan et al. 2021 – Rakascan, N., Drazic, G., Popovic, V., Milovanovic, J., Zivanovic, L., Remikovic, M.A., Milanovic, T. and Ikanovic, J. 2021. Effect of digestate from anaerobic digestion on Sorghum bicolor L. production and circular economy. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 49(1), pp. 1–13, DOI: 10.15835/nbha49112270.
 
68.
Reganold, J.P. and Wachter, J.M. 2016. Organic agriculture in the twenty-first century. Nature Plants 2(2), doi: 10.1038/ NPLANTS.2015.221.
 
69.
Restrepo et al. 2013 – Restrepo, A.P., Medina, E., Pérez-Espinosa, A., Agulló, E., Bustamante, M.A., Mininni, C., Bernal, M.P. and Moral, R. 2013. Substitution of peat in horticultural seedling: suitability of digestate-derived compost from cattle manure and maize silage codigestions. Communications in Soil Science and Plant Analysis 44(1–4), pp. 668–677, doi: 10.1080/00103624.2013.748004.
 
70.
Sabir et al. 2021 – Sabir, M.S., Shahzadi, F., Ali, F., Shakeela, Q., Niaz, Z. and Ahmed, S. 2021. Comparative efect of fertilization practices on soil microbial diversity and activity: an overview. Current Microbiology 78, pp. 3644–3655, DOI: 10.1007/s00284-021-02634-2.
 
71.
Siebielec et al. 2018 – Siebielec, G., Siebielec, S. and Lipski, D. 2018. Long-term impact of sewage sludge, digestate and mineral fertilizers on plant yield and soil biological activity. Journal of Cleaner Production 187, pp. 372–379, DOI: 10.1016/j.jclepro.2018.03.245.
 
72.
Stewart et al. 2005 – Stewart, W.M., Dibb, D.B., Johnston, A.E. and Smyth, T.J. 2005. The contribution of commercial fertilizer nutrients to food production. Agronomy Journal 97(1), pp. 1–6, doi: 10.2134/agronj2005.0001.
 
73.
Stoknes, K. 2020. Circular food; crops from digested waste in a controlled environment. Dissertation No. 2263, Faculty of Mathematics and Natural Sciences, University of Oslo Norway.
 
74.
Stoknes et al. 2016 – Stoknes, K., Scholwin, F., Krzesiński, W., Wojciechowska, E. and Jasińska, A. 2016. Efficiency of a novel “Food to waste to food” system including anaerobic digestion of food waste and cultivation of vegetables on digestate in a bubble-insulated greenhouse. Waste Management 56, pp. 466–476, doi: 10.1016/j.wasman.2n.2016.06.027.
 
75.
Stoknes et al. 2018 – Stoknes, K., Wojciechowska, E., Jasińska, A., Gulliksen, A. and Tesfamichael, A.A. 2018. Growing vegetables in the circular economy; cultivation of tomatoes on green waste compost and food waste digestate. ISHS Acta Horticulturae 1215, pp. 389–396, DOI: 10.17660/ActaHortic.2018.1215.71.
 
76.
Stürmer et al. 2020 – Stürmer, B., Pfundtner, E., Kirchmeyr, F. and Uschnig, S. 2020. Legal requirements for digestate as fertilizer in Austria and the European Union compared to actual technical parameters. Journal of Environmental Management 253, DOI: 10.1016/j.jenvman. 2019.109756.
 
77.
Tambone et al. 2010 – Tambone, F., Scaglia, B., D’Imporzano, G., Schievano, A., Orzi, V., Salati, S. and Adani, F. 2010. Assessing amendment and fertilizing properties of digestates from anaerobic digestion through a comparative study with digested sludge and compost. Chemosphere 81(5), pp. 577–583, doi: 10.1016/j.chemosphere.2010.08.034.
 
78.
Tarariko et al. 2001 – Tarariko, Yu.O., Nesmashna, O.Ye. and Hlushchenko, L.D. 2001. Energy evaluation of crop cultivation systems: methodical guidelines. Kyiv: Nora-Print.
 
79.
Тimon et al. 2015 – Тimon, T., Kunzová, E. and Friedlová, M. 2015. The effect of digestate, cattle slurry and mineral fertilization on the winter wheat yield and soil quality parameters. Plant Soil and Environment 61(11), pp. 522–527, DOI: 10.17221/530/2015-PSE.
 
80.
Tittarelli, F. 2020. Organic greenhouse production: towards an agroecological approach in the framework of the new European regulation – a review. Agronomy 10(1), doi: 10.3390/agronomy10010072.
 
81.
Tokarchuk, et al. 2021 – Tokarchuk, D., Pryshliak, N., Shynkovych, A. and Mazur, K. 2021. Strategic Potential of Agricultural Waste as a Feedstock for Biofuels Production in Ukraine. Rural Sustainability Research 46(341), pp. 1–12, DOI: 10.2478/plua-2021-0012.
 
82.
Verdi et al. 2019 – Verdi, L., Kuikman, P.J., Orlandini, S., Mancini, M., Napoli, M. and Dalla Marta, A. 2019. Does the use of digestate to replace mineral fertilizers have less emissions of N2O and NH3? Agricultural and Forest Meteorology 269–270, pp. 112–118, DOI: 10.1016/j.agrformet.2019.02.004.
 
83.
Vozhehova et al. 2021 – Vozhehova, R., Halchenko, N., Kotelnikov, D. and Maliarchuk, V. 2021. Energy efficiency of the technology of crop cultivation on irrigated soils of South Ukraine. Technical and Technological Aspects of Development and Testing of New Equipment and Technologies for Ukraine’s Agriculture 28(42), pp. 272–281, DOI: 10.31473/2305-5987-2021-1-28(42)-23.
 
84.
What is digestate? 2009. Anaerobic Digestion: Opportunities for Agriculture and Anvironment, Milano, January 24–25, 2008. Regione Lombardia, Universita Degli studi di Milano: Ed. by F. Adani, A. Schievano, G. Bossalie, Italy, pp. 7–18.
 
85.
Zakhariv, O.Ya. 2019. The efficiency of using digestate from biogas reactors for farms. Collection of scientific works of Dmytro Motorny TSATU. Economic Sciences 2(40), pp. 79–86, DOI: 10.31388/251294.
 
86.
Zhang et al. 2017 – Zhang, D., Wang, X. and Zhou, Z. 2017. Impacts of small-scale industrialized swine farming on local soil, water and crop qualities in a hilly red soil region of subtropical China. International Journal of Environmental Research and Public Health 14(12), DOI: 10.3390/ijerph14121524.
 
87.
Zhuchenko, A.A. 1980. Mathematical modeling in optimization of breeding and genetic research. Kyshynev: Shtyntsa, 104 pp.
 
88.
Zlobin, Yu.A. and Kochubei, N.V. 2003. General ecology. Sumy: VTD “University Book”, 416 pp.
 
89.
Zymovets, V. 2007. Financial support of innovative economic development. Ukraine’s Economy 11, pp. 9–16.
 
eISSN:2720-569X
ISSN:1429-6675
Journals System - logo
Scroll to top