ORIGINAL PAPER
Techno-economic PV evaluation depending on surface water cooling
 
More details
Hide details
1
Mechanical Engineering Department, National Research Centre (NRC), Egypt
 
2
Electrical Power and Machines Department, Faculty of Engineering, Helwan University, Egypt
 
 
Submission date: 2024-02-06
 
 
Final revision date: 2024-05-08
 
 
Acceptance date: 2024-05-09
 
 
Publication date: 2024-09-24
 
 
Corresponding author
Abdullah M. A. Shaaban   

Mechanical Engineering Department, National Research Centre (NRC), Egypt
 
 
Polityka Energetyczna – Energy Policy Journal 2024;27(3):53-70
 
KEYWORDS
TOPICS
ABSTRACT
Solar energy is one of the most important renewable energy sources and it can be exploited to produce electrical energy through photovoltaic (PV) panels. PV panels are affected by several factors, the most important being the panel temperature, which greatly affects the performance and efficiency of the PV. This paper investigates the effect of water-based surface cooling on the PV performance. Techno-economic PV evaluation depending on surface water cooling was examined. The effect of changing the water flow rate on the panel temperature was studied. The proposed system studied the effect of using variable water flow rates (1.25, 5, 7 L/min) on the panel temperature. A 260 W poly-crystalline PV panel combined with a water cooling system was examined experimentally. The PV panel temperature, open circuit voltage, short circuit current and output power were measured before and after cooling at variable flow rates. A PV panel analyzer I-V400 was used to test the panel in order to draw the IV and power curves. It was found that the rate of decrease in panel temperature with time is almost constant for all cases. Increasing the rate of water flow on the panel surface did not affect the rate of its temperature decrease with time. With the proposed surface cooling technique, the panel temperature decreased from 62.4 to 37.6oC. PV output power increased from 182.65 to 214.62W, with an improvement of around 18%. The amount of energy gained as a result of cooling saves around 0.7USD for one panel per year.
METADATA IN OTHER LANGUAGES:
Polish
Ocena techniczno-ekonomiczna PV w zależności od chłodzenia wodą powierzchniową
energia słoneczna, fotowoltaika, chłodzenie powierzchni PV, chłodzenie wodne, wydajność PV
Energia słoneczna jest jednym z najważniejszych odnawialnych źródeł energii i może być wykorzystywana do produkcji energii elektrycznej za pomocą paneli fotowoltaicznych (PV). Na panele PV wpływa kilka czynników, z których najważniejszym jest temperatura panelu, która w znacznym stopniu wpływa na wydajność i sprawność PV. W niniejszym artykule zbadano wpływ chłodzenia powierzchniowego na bazie wody na wydajność PV. Przebadano techniczno-ekonomiczną ocenę PV w zależności od chłodzenia wodą powierzchniową. Przebadano wpływ zmiany szybkości przepływu wody na temperaturę panelu. Proponowany system zbadał wpływ stosowania zmiennych szybkości przepływu wody (1,25, 5, 7 l/min) na temperaturę panelu. Eksperymentalnie zbadano polikrystaliczny panel PV o mocy 260 W połączony z systemem chłodzenia wodą. Temperaturę panelu PV, napięcie obwodu otwartego, prąd zwarcia i moc wyjściową mierzono przed i po schłodzeniu przy zmiennych szybkościach przepływu. Do przetestowania panelu w celu narysowania krzywych IV i mocy użyto analizatora paneli PV I-V400. Stwierdzono, że szybkość spadku temperatury panelu w czasie jest prawie stała we wszystkich przypadkach. Zwiększenie szybkości przepływu wody na powierzchni panelu nie wpłynęło na szybkość spadku jego temperatury w czasie. Dzięki proponowanej technice chłodzenia powierzchni, temperatura panelu spadła z 62,4 do 37,6°C. Moc wyjściowa PV wzrosła z 182,65 do 214,62 W, ​co stanowi poprawę o około 18%. Ilość energii uzyskanej w wyniku chłodzenia pozwala zaoszczędzić około 0,7 USD na jeden panel rocznie.
 
REFERENCES (24)
1.
Ahmed et al. 2021 – Ahmed, A., Zhang, G., Shanks, K., Sundaram, S., Ding, Y. and Mallick, T. 2021. Performance evaluation of single multi-junction solar cell for high concentrator photovoltaics using minichannel heat sink with nanofluids. Applied Thermal Engineering 182, DOI: 10.1016/j.applthermaleng.2020.115868.
 
2.
Ahmed et al. 2023 – Ahmed, M.S., Karal, R., Das, B.K. and Das, A. 2023. Experimental investigation of cooling, wind velocity, and dust deposition effects on solar PV performance in a tropical climate in Bangladesh. Case Studies in Thermal Engineering 50, DOI: 10.1016/j.csite.2023.103409.
 
3.
Amanlou et al. 2018 – Amanlou, Y., Hashjin, T.T., Ghobadian, B. and Najafi, G. 2018. Air cooling low concentrated photovoltaic/thermal (LCPV/T) solar collector to approach uniform temperature distribution on the PV plate. Applied Thermal Engineering 141, pp. 413–421, DOI: 10.1016/j.applthermaleng.2018.05.070.
 
4.
Azimi et al. 2024 – Azimi, A., Basiri, N. and Eslami, M. 2014. A novel two-step optimization approach for film water cooling of a photovoltaic module in real ambient conditions. Applied Thermal Engineering 236, DOI: 10.1016/j.applthermaleng.2023.121898.
 
5.
Bayrak et al. 2020 – Bayrak, F., Oztop, H.F. and Selimefendigil, F. 2020. Experimental study for the application of different cooling techniques in photovoltaic (PV) panels. Energy Conversion and Management 212, DOI: 10.1016/j.enconman.2020.112789.
 
6.
Bhakre et al. 2021 – Bhakre S.S., Sawarkar, P.D. and Kalamkar, V.R. 2021. Performance evaluation of PV panel surfaces exposed to hydraulic cooling – A review. Solar Energy 224, pp. 1193–1209, DOI: 10.1016/j.solener.2021.06.083.
 
7.
Chandrasekar et al. 2013 – Chandrasekar, M., Suresh, S., Senthilkumar, T. and Karthikeyan, M.G. 2013. Passive cooling of standalone flat PV module with cotton wick structures. Energy Conversion and Managemen 71, pp. 43–50, DOI: 10.1016/j.enconman.2013.03.012.
 
8.
Chanphavong et al. 2022 – Chanphavong, L., Chanthaboune, V., Phommachanh, S., Vilaida, X. and Bounyanite, P. 2022. Enhancement of performance and exergy analysis of a water-cooling solar photovoltaic panel. Total Environment Research Themes 3, DOI: 10.1016/j.totert.2022.100018.
 
9.
Dwivedi et al. 2020 – Dwivedi P., Sudhakar, K., Soni, A., Solomin, E. and Kirpichnikova, I. 2020. Advanced cooling techniques of P.V. modules: A state of art. Case Studies in Thermal Engineering 21, DOI: 10.1016/j.csite.2020.100674.
 
10.
Elnozahy et al. 2015 – Elnozahy A., Abdel Rahman, A.K., Ali, A.H.H., Abdel-Salam, M. and Ookawara, S. 2015. Performance of a PV module integrated with standalone building in hot arid areas as enhanced by surface cooling and cleaning. Energy and Buildings 88, pp. 100–109, DOI: 10.1016/j.enbuild.2014.12.012.
 
11.
Hachicha et al. 2015 – Hachicha, A.A., Ghenai, C. and Hamid, A. 2015. Enhancing the Performance of a Photovoltaic Module Using Different Cooling Methods. International Journal of Energy and Power Engineering 9.
 
12.
Han et al. 2020 – Han, X., Zhao, X. and Chen, X. 2020. Design and analysis of a concentrating PV/T system with nanofluid based spectral beam splitter and heat pipe cooling. Renewable Energy 162, pp. 55–70, DOI: 10.1016/j.renene.2020.07.131.
 
13.
Khalil et al. 2019 – Khalil, A., Abdelgaied, M. and Hamdy, M. 2019. Performance improvement of PV panel using water cooling technology under Egyptian conditions. Engineering Research Journal 2, pp. 42–47, DOI: 10.21608/erjeng.2019.125503.
 
14.
Kumar et al. 2020 – Kumar, A.A, Singh, A.P. and Singh, O.P. 2020. Effect of novel PCM encapsulation designs on electrical and thermal performance of a hybrid photovoltaic solar panel. Solar Energy 205, pp. 320–333, DOI: 10.1016/j.solener.2020.05.062.
 
15.
Maleki et al. 2020 – Maleki, A., Haghighi, A., Assad, M.E., Mahariq, I. and Nazari, M.A. 2020. A review on the approaches employed for cooling PV cells. Solar Energy, 209, pp. 170–185, DOI: 10.1016/j.solener.2020.08.083.
 
16.
Panda et al. 2023 – Panda, S., Panda B., Jena, C., Nanda, L. and Pradhan, A. 2023. Investigating the similarities and differences between front and back surface cooling for PV panels. Materials Today: Proceedings 74, pp. 358–363, DOI: 10.1016/j.matpr.2022.08.424.
 
17.
Patel et al. 2023 – Patel, P., Shah, P. and Mavani, A. 2023. Performance enhancement of PV panel by cooling front surface of PV panel with the use of water as cooling medium. [In:] Lecture Notes in Electrical Engineering (LNEE) 887, DOI: 10.1007/978-981-19-1906-0_12.
 
18.
Rajvikram et al. 2019 – Rajvikram, M., Leoponraj, S., Ramkumar, S., Akshaya, H. and Dheeraj, A. 2019. Experimental investigation on the abasement of operating temperature in solar photovoltaic panel using PCM and aluminium. Solar Energy 188, pp. 327–338, DOI: 10.1016/j.solener.2019.05.067.
 
19.
Sainthiya et al. 2018 – Sainthiya, H., Beniwal, N.S. and Garg, N. 2018. Efficiency improvement of a photovoltaic module using front surface cooling method in summer and winter conditions. Journal of Solar Energy Engineering 140, DOI: 10.1115/1.4040238.
 
20.
Sasidharan et al. 2018 – Sasidharan, N., Ongsakul, W., Varghese, M.P., Anooja, V.S. and Akhila, R. 2018. Efficient improvement of solar photovoltaic system using artificial cooling methods. International Conference on Power, Signals, Control and Computation (EPSCICON), pp. 1–6, DOI: 10.1109/EPSCICON.2018.8379593.
 
21.
Shaaban et al. 2023 – Shaaban, A.M.A., Mosa, M.A., El-Samahy, A.A. and Abed, K.A. 2023. Enhancing the performance of photovoltaic panels by cooling: a review. International Review of Automatic Control (I.RE.A.CO.) 16(1), pp. 26–43, DOI: 10.15866/ireaco.v16i1.23181.
 
22.
Sharaf et al. 2022 – Sharaf, M., Yousef, M.S. and Huzayyin, A.S. 2022. Review of cooling techniques used to enhance the efficiency of photovoltaic power systems. Environmental Science and Pollution Research 14, pp. 26131–26159, DOI: 10.1007/s11356-022-18719-9.
 
23.
Tiwari et al. 2022 – Tiwari, S., Swaminathan, M., Eashwar S., Harender and Singh, D.B. 2022. Performance enhancement of the photovoltaic system with different cooling methods. Environmental Science and Pollution Research 29, pp. 45107–45130, DOI: 10.1007/s11356-022-20330-x.
 
24.
Velmurugan et al. 2022 – Velmurugan, K., Elavarasan, R.M., Pham Van De, Karthikeyan, V., Korukonda, T.B., Dhanraj, J.A., Emsaeng, K., Chowdhury, M.S., Techato, K., Abou El Khier, B.S. and Attia E. 2022. A review of heat batteries based PV module cooling – case studies on performance enhancement of large-scale solar PV system. Sustainability 14, DOI: 10.3390/su14041963.
 
eISSN:2720-569X
ISSN:1429-6675
Journals System - logo
Scroll to top