ORIGINAL PAPER
Prosumer policy options in developing countries: a comparative analysis of feed-in tariffs, net metering, and net billing for residential PV-battery systems
More details
Hide details
1
Energy Economics, Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Poland
2
IFP Energies Nouvelles, 1-4 Avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex, France
3
Facultad de Ingeniería en Electricidad y Computación, Escuela Superior Politécnica del Litoral, Ecuador
4
Facultad de Ciencias de la Ingeniería y Aplicadas, Universidad Técnica de Cotopaxi, Ecuador
These authors had equal contribution to this work
Submission date: 2025-02-24
Final revision date: 2025-03-10
Acceptance date: 2025-03-10
Publication date: 2025-03-27
Corresponding author
Pablo Benalcazar
Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Wybickiego 7, 31-261 Kraków, Poland
Polityka Energetyczna – Energy Policy Journal 2025;28(1):77-98
KEYWORDS
TOPICS
ABSTRACT
Developing countries face significant challenges in their electricity sector, including outdated infrastructure, insufficient generation capacity, and underdeveloped electricity markets. Solar photovoltaic systems combined with batteries (PV-BES) for residential consumers present a viable solution to help address these challenges. To support the deployment of such technologies, it is essential to establish well-designed compensation mechanisms that encourage investment in the sector. Using Ecuador as a case study, this research aims to analyze, through an optimization tool, the techno-economic performance of PV-BES systems for different consumer categories under various scenarios – Business as Usual (BAU) and Without Subsidies (NoSub) – as well as under different compensation mechanisms, namely Feed-in Tariff (FiT), Net Metering (NM), and Net Billing (NB). The results show that current electricity price subsidies significantly discourage investment in new solar capacity in the residential sector, particularly for low-electricity consumers. Eliminating subsidies would result in a more competitive LCOE across all consumer categories, making the adoption of PV-BES systems more viable. Finally, to promote PV-BES adoption while ensuring a fair distribution of benefits among all actors, customized compensation mechanisms tailored to each consumer category are necessary. Otherwise, high electricity consumption categories would receive the greatest benefits, potentially leading to inequities in the system.
FUNDING
This work was partially carried out as part of the statutory research activity of the Mineral and Energy Economy Research Institute of the Polish Academy of Sciences
CONFLICT OF INTEREST
The Authors have no conflicts of interest to declare
METADATA IN OTHER LANGUAGES:
Polish
Warianty polityki prosumenckiej w krajach rozwijających się: analiza porównawcza taryf gwarantowanych, net-meteringu i net-billingu dla systemów fotowoltaicznych z magazynem energii dla odbiorców indywidualnych
prosumenci, mechanizmy kompensacyjne, net metering, net billing, taryfy gwarantowane
Kraje rozwijające się stają przed znaczącymi wyzwaniami dotyczącymi ich sektorów elektroenergetycznych, takimi jak przestarzała infrastruktura, niewystarczająca moc zainstalowana oraz słabo rozwinięte rynki energii. Systemy fotowoltaiczne z bateryjnymi magazynami energii (PV-BES) dla konsumentów indywidualnych stanowią realne rozwiązanie mogące pomóc w przezwyciężeniu tych problemów. Aby wspierać wdrażanie takich technologii, niezbędne jest ustanowienie dobrze zaprojektowanych mechanizmów kompensacyjnych, które zachęcają do inwestowania w ten sektor. Wykorzystując Ekwador jako studium przypadku, to badanie ma na celu analizę, za pomocą narzędzia optymalizacyjnego, wydajności techniczno-ekonomicznej systemów PV-BES dla różnych kategorii konsumentów w różnych scenariuszach – Standardowym (BAU) i Bez Dopłat (NoSub) – oraz przy różnych mechanizmach kompensacyjnych, takich jak Taryfy Gwarantowane (FiT), Net-Metering (NM) i Net-Billing (NB). Wyniki pokazują, że obecne dopłaty do cen energii elektrycznej znacznie ograniczają inwestycje w nową moc słoneczną w sektorze indywidualnym, zwłaszcza wśród konsumentów o niskim zużyciu energii elektrycznej. Eliminacja dopłat doprowadziłaby do bardziej konkurencyjnego LCOE we wszystkich kategoriach konsumentów, czyniąc adopcję systemów PV-BES bardziej opłacalną. W celu promocji adopcji systemów PV-BES i zapewnienia sprawiedliwego podziału korzyści między wszystkich uczestników, konieczne jest stworzenie dostosowanych mechanizmów kompensacyjnych, dopasowanych do każdej kategorii konsumentów. W przeciwnym razie, kategorie konsumentów o wysokim zużyciu energii elektrycznej otrzymałyby największe korzyści, co mogłoby prowadzić do nierówności w systemie.
REFERENCES (46)
1.
Ahsan Kabir et al. 2023 – Ahsan Kabir, Md., Farjana, F., Choudhury, R., Imrul Kayes, A., Sawkat Ali, M. and Farrok, O. 2023. Net-metering and Feed-in-Tariff policies for the optimum billing scheme for future industrial PV systems in Bangladesh. Alexandria Engineering Journal 63, pp. 157–174, DOI: 10.1016/j.aej.2022.08.004.
2.
Andrade et al. 2022 – Andrade, C., Selosse, S. and Maïzi, N. 2022. The role of power-to-gas in the integration of variable renewables.
3.
ARCERNNR 2023. Annual and Multi-annual Statistics of the Ecuadorian Electricity Sector 2023. (Estadística Anual y Multianual del Sector Eléctrico Ecuatoriano 2023). Quito (in Spanish).
4.
ARCERNNR 2024. Pliego-Tarifario-SPEE-2024 (in Spanish).
5.
ARCONEL 2018. RESOLUCIÓN Nro. ARCONEL-053/18, Arconel. Ecuador (in Spanish).
6.
Barragán-Escandón et al. 2022 – Barragán-Escandón, A., Jara-Nieves, D., Romero-Fajardoc, I., Zalamea-Leónesteban, E.F. and Serrano-Guerrero, X. 2022. Barriers to renewable energy expansion: Ecuador as a case study. Energy Strategy Reviews 43, DOI: 10.1016/j.esr.2022.100903.
7.
Benalcazar et al. 2024a – Benalcazar, P., Kalka, M. and Kamiński, J. 2024a. From consumer to prosumer: A model-based analysis of costs and benefits of grid-connected residential PV-battery systems. Energy Policy 191, DOI: 10.1016/j.enpol.2024.114167.
8.
Benalcazar et al. 2024b – Benalcazar, P., Kalka, M. and Kamiński, J. 2024b. Transitioning from net-metering to net-billing: A model-based analysis for Poland. Sustainable Energy Technologies and Assessments 72, DOI: 10.1016/j.seta.2024.104073.
9.
Campoccia et al. 2014 – Campoccia, A., Dusonchet, L., Telaretti, E. and Zizzo, G. 2014. An analysis of feed’in tariffs for solar PV in six representative countries of the European Union. Solar Energy 107, pp. 530–542, DOI: 10.1016/j.solener.2014.05.047.
10.
CELEC EP 2024. Estudio de potencial solar fotovoltaico del Ecuador (Estudio de potencial solar fotovoltaico del Ecuador) (in Spanish).
11.
Cevallos-Sierra, J. and Ramos-Martin, J. 2018. Spatial assessment of the potential of renewable energy: The case of Ecuador. Renewable and Sustainable Energy Reviews 81, pp. 1154–1165, DOI: 10.1016/j.rser.2017.08.015.
12.
Christoforidis et al. 2016 – Christoforidis, G., Panapakidis, I., Papadopoulos, T., Papagiannis, G., Koumparou, I., Hadjipanayi, M. and Georghiou, G. 2016. A Model for the Assessment of Different Net-Metering Policies. Energies 9(4), DOI: 10.3390/en9040262.
13.
CONELEC 2014. Regulación No. CONELEC 001/13 para: “La participación de los generadores de energía eléctrica producida con Recursos Energéticos Renovables No Convencionales” (in Spanish).
14.
Couture, T. and Gagnon, Y. 2010. An analysis of feed-in tariff remuneration models: Implications for renewable energy investment. Energy Policy 38, pp. 955–965, DOI: 10.1016/j.enpol.2009.10.047.
15.
Da Pereira Silva et al. 2019 – Da Pereira Silva, P., Dantas, G., Pereira, G.I., Câmara, L. and Castro, N.J. de 2019. Photovoltaic distributed generation – An international review on diffusion, support policies, and electricity sector regulatory adaptation. Renewable and Sustainable Energy Reviews 103, pp. 30–39, DOI: 10.1016/j.rser.2018.12.028.
16.
De Mel et al. 2022 – De Mel, I., Klymenko, O.V. and Short, M. 2022. Balancing accuracy and complexity in optimisation models of distributed energy systems and microgrids with optimal power flow: A review. Sustainable Energy Technologies and Assessments 52, DOI: 10.1016/j.seta.2022.102066.
17.
Dijkgraaf et al. 2018 – Dijkgraaf, E., van Dorp, T.P. and Maasland, E. 2018. On the Effectiveness of Feed-in Tariffs in the Development of Solar Photovoltaics. The Energy Journal 39, pp. 81–100, DOI: 10.5547/01956574.39.1.edij.
18.
Dong et al. 2021 – Dong, C., Zhou, R. and Li, J. 2021. Rushing for subsidies: The impact of feed-in tariffs on solar photovoltaic capacity development in China. Applied Energy 281, DOI: 10.1016/j.apenergy.2020.116007.
19.
Du, Y. and Takeuchi, K. 2020. Does a small difference make a difference? Impact of feed-in tariff on renewable power generation in China. Energy Economics 87, DOI: 10.1016/j.eneco.2020.104710.
20.
Dusonchet, L. and Telaretti, E. 2010. Economic analysis of different supporting policies for the production of electrical energy by solar photovoltaics in eastern European Union countries. Energy Policy 38, pp. 4011–4020, DOI: 10.1016/j.enpol.2010.03.025.
21.
Echegaray et al. 2018 – Echegaray, C., Masabanda-Caisaguano, M., Espinosa, F.R., Toulkeridis, T., Mato, F. and Alegria, A. 2018. Solar Energy Potential in Ecuador. [In:] 2018 International Conference on eDemocracy & eGovernment (ICEDEG) 1(1), pp. 46–51, DOI: 10.1109/ICEDEG.2018.8372318.
22.
Elkazaz et al. 2020 – Elkazaz, M., Sumner, M., Naghiyev, E., Pholboon, S., Davies, R. and Thomas, D. 2020. A hierarchical two-stage energy management for a home microgrid using model predictive and real-time controllers. Applied Energy 269, DOI: 10.1016/j.apenergy.2020.115118.
23.
Forcan, J. and Forcan, M. 2023. Behavior of prosumers in Smart Grid: A comparison of Net Energy Metering and Billing Schemes, and Game Theory-based Local Electricity Market. Sustainable Energy, Grids and Networks 34, DOI: 10.1016/j.segan.2023.101058.
24.
García-Álvarez et al. 2018 – García-Álvarez, M.T., Cabeza-García, L. and Soares, I. 2018. Assessment of energy policies to promote photovoltaic generation in the European Union. Energy 151, pp. 864–874, DOI: 10.1016/j.energy.2018.03.066.
25.
Górnowicz, R. and Castro, R. 2020. Optimal design and economic analysis of a PV system operating under Net Metering or Feed-In-Tariff support mechanisms: A case study in Poland. Sustainable Energy Technologies and Assessments 42, DOI: 10.1016/j.seta.2020.100863.
26.
Guamán et al. 2024 – Guamán, W., Benalcazar, P., Ñacato, K. and Vaca, I, 2024. Geography-based transmission network expansion strategies for Andean electrical systems. Journal of Economy and Technology 2, pp. 31–46, DOI: 10.1016/j.ject.2024.04.001.
27.
Guamán et al. 2025 – Guamán, W., Benalcazar, P., Cordova-Garcia, J. and Torres, M. 2025. Machine Learning-Based Projections of Long-Term Electricity Consumption: The Case Study of Ecuador. [In:] International Conference on Advanced Research in Technologies, Information, Innovation, and Sustainability ARTIIS 2024, Springer Nature, Santiago, Chile, pp. 174–187, DOI: 10.1007/978-3-031-83432-5_12.
28.
Gul et al. 2016 – Gul, M., Kotak, Y. and Muneer, T. 2016. Review on recent trend of solar photovoltaic technology. Energy Exploration & Exploitation 34, pp. 485–526, DOI: 10.1177/0144598716650552.
29.
Jara Alvear, J.E. 2018. Solar photovoltaic potential to complement hydropower in Ecuador: A GIS-based framework of analysis.
30.
Khawaja, A. and Olczak, P. 2024. Analysis of the possibility of increasing the self-consumption rate in a household PV micro-installation due to the storage of electricity and heat. Polityka Energetyczna – Energy Policy Journal 27(3), pp. 71–86, DOI: 10.33223/epj/186877.
31.
Klein, S.J.W. and Noblet, C.L. 2017. Exploring Sustainable Energy Economics: Net Metering, Rate Designs and Consumer Behavior. Current Sustainable/Renewable Energy Reports 4, pp. 23–32, DOI: 10.1007/s40518-017-0073-5.
32.
Komorowska et al. 2023 – Komorowska, A., Kaszyński, P. and Kamiński, J. 2023. Where does the capacity market money go? Lessons learned from Poland. Energy Policy 173, DOI: 10.1016/j.enpol.2023.113419.
33.
Kurdi et al. 2023 – Kurdi, Y., Alkhatatbeh, B.J. and Asadi, S. 2023. The influence of electricity transaction models on the optimal design of PV and PV-BESS systems. Solar Energy 259, pp. 437–451.
34.
Lai, C.S. and McCulloch, M.D. 2017. Levelized cost of electricity for solar photovoltaic and electrical energy storage. Applied Energy 190, pp. 191–203, DOI: 10.1016/j.apenergy.2016.12.153.
35.
Langer, L. and Volling, T. 2020. An optimal home energy management system for modulating heat pumps and photovoltaic systems. Applied Energy 278, DOI: 10.1016/j.apenergy.2020.115661.
36.
Le et al. 2022 – Le, H.T.-T., Sanseverino, E.R., Nguyen, D.-Q., Di Silvestre, M.L., Favuzza, S. and Pham, M.-H. 2022. Critical Assessment of Feed-In Tariffs and Solar Photovoltaic Development in Vietnam. Energies 15(2), DOI: 10.3390/en15020556.
37.
Levin, T. and Thomas, V.M. 2016. Can developing countries leapfrog the centralized electrification paradigm? Energy for Sustainable Development 31, pp. 97–107, DOI: 10.1016/j.esd.2015.12.005.
38.
Mansoor et al. 2024 – Mansoor, M., Muhammad, F. and Ahsen, M. 2024. Barriers to Solar PV Adoption in Developing Countries: Multiple Regression and Analytical Hierarchy Process Approach. Sustaintability 16, pp. 1–19, DOI: 10.3390/su16031032.
39.
OLADE 2021. Latin America and the Caribbean Energy Price Report (Informe de Precios de la Energía de América Latina y el Caribe) (in Spanish).
40.
Poullikkas, A. 2013. A comparative assessment of net metering and feed in tariff schemes for residential PV systems. Sustainable Energy Technologies and Assessments 3, pp. 1–8, DOI: 10.1016/j.seta.2013.04.001.
41.
Say, K. and John, M. 2021. Molehills into mountains: Transitional pressures from household PV-battery adoption under flat retail and feed-in tariffs. Energy Policy 152, DOI: 10.1016/j.enpol.2021.112213.
42.
Tapia et al. 2023 – Tapia, M., Ramos, L., Heinemann, D. and Zondervan, E. 2023. Power to the city: Assessing the rooftop solar photovoltaic potential in multiple cities of Ecuador. Physical Sciences Reviews 8(9), DOI: 10.1515/psr-2020-0061.
43.
Trotter et al. 2016 – Trotter, I.M., Bolkesjø, T.F., Féres, J.G. and Hollanda, L. 2016. Climate change and electricity demand in Brazil: A stochastic approach. Energy 102, pp. 596–604, DOI: 10.1016/j.energy.2016.02.120.
44.
Watts et al. 2015 – Watts, D., Valdés, M.F., Jara, D. and Watson, A. 2015. Potential residential PV development in Chile: The effect of Net Metering and Net Billing schemes for grid-connected PV systems. Renewable and Sustainable Energy Reviews 41, pp. 1037–1051, DOI: 10.1016/j.rser.2014.07.201.
45.
Zhang et al. 2020 – Zhang, Y., Ma, T., Elia Campana, P., Yamaguchi, Y. and Dai, Y. 2020. A techno-economic sizing method for grid-connected household photovoltaic battery systems. Applied Energy 269, DOI: 10.1016/j.apenergy.2020.115106.
46.
Zubi et al. 2016 – Zubi, G., Dufo-López, R., Pasaoglu, G. and Pardo, N. 2016. Techno-economic assessment of an off-grid PV system for developing regions to provide electricity for basic domestic needs: A 2020–2040 scenario. Applied Energy 176, pp. 309–319, DOI: 10.1016/j.apenergy.2016.05.022.