ORIGINAL PAPER
Specifics of cultivation, productivity, and energy efficiency of miscanthus giganteus for solid biofuel production
 
More details
Hide details
1
Ministry of Education and Science of Ukraine, Vinnytsia National Agrarian University, Ukraine
 
 
Submission date: 2024-06-25
 
 
Final revision date: 2024-09-29
 
 
Acceptance date: 2024-11-24
 
 
Publication date: 2025-03-27
 
 
Corresponding author
Roman Lohosha   

Ministry of Education and Science of Ukraine, Vinnytsia National Agrarian University, Ukraine, Sonyachna St, 3, 21000, Vinnytsia, Ukraine
 
 
Polityka Energetyczna – Energy Policy Journal 2025;28(1):99-112
 
KEYWORDS
TOPICS
ABSTRACT
Miscanthus is one of the most promising energy crops for growing on the infertile soils of Ukraine. Miscanthus cultivation will significantly increase Ukraine’s energy independence and reduce the use of solid fuels. The research studies the specifics of using Miscanthus giganteus Terravesta AthenaTM. Guidelines have been developed regarding the peculiarities of pre-sowing storage of rhizomes, application of mineral fertilizers, and planting rhizomes in the ridge using GIS technologies. It allows us to obtain high germination capacity (more than 94%), effectively use soil moisture reserves at the beginning of the vegetation period, control weeds, and form the yield of vegetative mass at the level of 14.53 t/ha in the first year of vegetation, and in the second year of vegetation, it will achieve a stable yield due to the optimal planting density. Cultivation of Miscanthus giganteus of hybrid Terra vesta AthenaTM, especially on marginal lands, will provide valuable raw materials for the production of solid biofuel (pellets) that meets European standards by its essential environmental and energy characteristics. The energy and calorific value of Miscanthus biomass are high, and less carbon dioxide enters the atmosphere during its burning, which becomes its main advantage over other types of energy crops. The highest economic and energy effect can be obtained if the energy-saving elements of Miscanthus giganteus cultivation technology are followed (in particular, reducing the costs for weed control products) when cultivating biomass for biofuel, having created an energy conveyor to supply raw materials to the consumer.
CONFLICT OF INTEREST
The Authors have no conflicts of interest to declare
METADATA IN OTHER LANGUAGES:
Polish
Specyfika uprawy, produktywności i efektywności energetycznej miscanthus giganteus do produkcji stałych biopaliw
technologia uprawy, Miscanthus giganteus, efektywność energetyczna, plon, biopaliwo stałe
Miskant jest jedną z najbardziej obiecujących roślin energetycznych do uprawy na nieurodzajnych glebach Ukrainy. Uprawa miskanta znacznie zwiększy niezależność energetyczną Ukrainy i zmniejszy zużycie paliw stałych. Badania dotyczą specyfiki wykorzystania Miscanthus giganteus Terravesta AthenaTM. Opracowano wytyczne dotyczące specyfiki przedsiewnego przechowywania kłączy, stosowania nawozów mineralnych i sadzenia kłączy w redlinie przy użyciu technologii GIS. Pozwala to uzyskać wysoką zdolność kiełkowania (ponad 94%), efektywnie wykorzystać rezerwy wilgoci glebowej na początku okresu wegetacji, kontrolować chwasty i kształtować plon masy wegetatywnej na poziomie 14,53 t/ha w pierwszym roku wegetacji, a w drugim roku wegetacji osiągnie stabilny plon dzięki optymalnej gęstości nasadzeń. Uprawa Miscanthus giganteus hybrydy Terra vesta AthenaTM, zwłaszcza na gruntach marginalnych, dostarczy cennych surowców do produkcji stałego biopaliwa (pelletu), które spełnia europejskie normy dzięki swoim podstawowym cechom środowiskowym i energetycznym. Wartość energetyczna i kaloryczna biomasy Miscanthus jest wysoka, a podczas jej spalania do atmosfery dostaje się mniej dwutlenku węgla, co staje się jej główną zaletą w porównaniu z innymi rodzajami upraw energetycznych. Największy efekt ekonomiczny i energetyczny można uzyskać, jeśli elementy energooszczędne technologii uprawy Miscanthus giganteus zostaną zastosowane (w szczególności obniżenie kosztów środków chwastobójczych) podczas uprawy biomasy na biopaliwo, po stworzeniu przenośnika energii do dostarczania surowców do konsumenta.
REFERENCES (43)
1.
Biletsky et al. 2018 – Biletsky, V.S., Orlovsky, V.M. and Vitryk, V.H. 2018. Fundamentals of oil and gas engineering: textbook. Poltava: ASMI LLC.
 
2.
Daraban et al. 2015 – Daraban (Oros), A.E., Jurcoane, S., Voicea, I. and Voicu, G. 2015. Miscanthus Giganteus Biomass for Sustainable Energy in Small Scale Heating Systems. Agriculture and Agricultural Science Proceedings 6, pp. 538–544, DOI: 10.1016/j.aaspro.2015.08.082.
 
3.
Dekovets et al. 2021 – Dekovets, V.O., Kulyk, M.I. and Halytska, M.A. 2021. Biologization of the technology of growing Miscanthus giganteus on biofuel. Agrarian Innovations 10, pp. 23–28, DOI: 10.32848/agrar.innov.2021.10.4.
 
4.
Dey et al. 2022 – Dey, S., Sreenivasulu, A., Veerendra, K., Rao, V. and Babu, A. 2022. Renewable energy present status and future potentials in India: An overview. Innovation and Green Development 1(1), DOI: 10.1016/j.igd.2022.100006.
 
5.
Diachuk et al. 2017 – Diachuk, O., Chepeliev, M., Podolets, R., Trypolska, G., Venger, V., Saprykina, T. and Yukhymets, R. 2017. Transition of Ukraine to the renewable energy by 2050 results of modeling of the reference and alternative scenarios for the development of energy sector. Heinrich Boell Foundation Regional Office in Ukriane. Kyiv: Publishing house «Art Book» Ltd.
 
6.
Dubis et al. 2019 – Dubis, B., Jankowski, K. J., Załuski, D. and Bórawski, P. 2019. Biomass production and energy balance of Miscanthus over a period of 11 years: A case study in a large-scale farm in Poland. GCB Bioenergy 11, pp. 1187–1201, DOI: 10.1111/gcbb.12625.
 
7.
Gontaruk et al. 2024 – Gontaruk, Y., Kolomiiets, T., Honcharuk, I. and Tokarchuk, D. 2024. Production and Use of Biogas and Biomethane from Waste for Climate Neutrality and Development of Green Economy. Journal of Ecological Engineering 25(2), pp. 20–32, DOI: 10.12911/22998993/175876.
 
8.
Hadzalo et al. 2018 – Hadzalo, Ya.M., Hladii, M.V., Sabluk, P.T. and Luzan, Yu.Ya. 2018. Development of the agrarian sphere of economy in the conditions of management decentralization in Ukraine (Rozvytok ahrarnoyi sfery ekonomiky v umovakh detsentralizatsiyi upravlinnya v Ukrayini). Kyiv: Agrarian Science (in Ukrainian).
 
9.
Heletukha, H. and Zheliezna, T. 2023. Production of bioethanol in Ukraine: status and development prospects. [Online] http://milkua.info/uk/post/vir... [Accessed: 2024-10-12].
 
10.
Holub et al. 2017 – Holub, H.A., Kukharets, S.M., Marus, O.A. et al. 2017. Bioenergy systems in agricultural production. Kyiv: NUBiP of Ukraine.
 
11.
Honcharuk et al. 2023 – Honcharuk I., Tokarchuk D., Gontaruk Y. and Hreshchuk H. 2023. Bioenergy recycling of household solid waste as a direction for ensuring sustainable development of rural areas. Polityka Energetyczna – Energy Policy Journal 26(1), pp. 23–42, DOI: 10.33223/epj/161467.
 
12.
Horb et al. 2019 – Horb, O.O., Chaika, T.O. and Yasnolob, I.O. 2019. Natural resource and energy potentials: directions of conservation, restoration and rational use: collective monograph. Poltava: “Astraia” Publishing House.
 
13.
Huisman, W. 1998. Logistics of harvest of Miscanthus sinensis Giganteus. Biomass for energy, environment, agriculture and industry. Oxford: Elsevier, pp. 361–371.
 
14.
Jones, H.G. 1992. Plants and microclimate: Quantitative Approach to Environmental Plant Physiology. 2nd edn. Cambridge: Cambridge University Press. 396.
 
15.
Kalenska et al. 2022 – Kalenska, S.M., Rakhmetov, D.B. et al. 2022. Energy and raw plant resources. Kyiv: NUBiP of Ukraine.
 
16.
Kaletnik et al. 2020 – Kaletnik, G., Honcharuk, I. and Okhota, Yu. 2020. The Waste-Free Production Development for the Energy Autonomy Formation of Ukrainian Agricultural Enterprises. Journal of Environmental Management and Tourism 3(43), pp. 513–522, DOI: 10.14505//jemt.v11.3(43).02.
 
17.
Kaletnik et al. 2021 – Kaletnik, H.M., Palamarchuk, V.D., Honcharuk, I.V., Yemchyk, T.V. and Telekalo, N.V. 2021. Prospects for the use of corn for energy-efficient and ecologically safe development of rural areas (Perspektyvy vykorystannya kukurudzy dlya enerhoefektyvnoho ta ekolohobezpechnoho rozvytku silʹsʹkykh terytoriy). Vinnytsia: FOP Kushnir Y. V. 260 p. (in Ukrainian).
 
18.
Kaletnik et al. 2021 – Kaletnik, G., Pryshliak, N. and Tokarchuk, D. 2021. Potential of production of energy crops in Ukraine and their processing on solid biofuels. Ecological Engineering and Environmental Technology 22(3), pp. 59–70, DOI: 10.12912/27197050/135447.
 
19.
Kharitonov et al. 2020 – Kharitonov, M.M., Babenko, M.H., Martynova, N.V., Rula, I.V., Honchar, N.V., Havriushenko, O.O., Klimkina, I.I., Zolotovska, O.V. and Frolova, L.A. 2020. Comprehensive ecological assessment of the creation of energy plantations on reclaimed land: monograph. Dnipro: LIRA 191.
 
20.
Khivrych et al. 2011 – Khivrych, O.B., Kvak, V.M., Kaskiv, V.V. et al. 2011. Energy plants as an alternative of traditional fuels. Agrobiology 6, pp. 153–157.
 
21.
Kowalczyk-Juśko, A. 2022. Evaluation of the Effects of Using the Giant Miscanthus (Miscanthus × Giganteus) Biomass in Various Energy Conversion Processes. Energies 15(10), DOI: 10.3390/en15103486.
 
22.
Kudria et al. 2020 – Kudria, S.O. et al. 2020. Renewable energy sources. Kyiv: Institute of Renewable Energy of the National Academy of Sciences.
 
23.
Kulyk et al. 2023 – Kulyk, M.I. et al. 2023. Energy crops: assortment, biology, ecology, agrotechnology: a collective. Poltava: “Astraya”.
 
24.
Kulyk, M.I. and Padalka, V.V. 2020. Development of bioenergetics based on plant energy resources (on the example of Poltava region). Management of Strategies of Anticipatory Innovative Development. Ed. N.S. Illiashenko. Sumy: Territory.
 
25.
Lohosha et al. 2023 – Lohosha, R., Palamarchuk, V. and Krychkovskyi, V. 2023. Economic efficiency of using digestate from biogas plants in Ukraine when growing agricultural crops as a way of achieving the goals of the European Green Deal. Polityka Energetyczna – Energy Policy Journal 26(2), pp. 161––182, DOI: 10.33223/epj/163434.
 
26.
Lohosha et al. 2024 – Lohosha R., Palamarchuk, V., Krychkovskyi, V. and Belkin, I. 2024. An advanced European overview of the bioenergy efficiency of using digestate from biogas plants when growing agricultural crops. Polityka Energetyczna – Energy Policy Journal 27(1), pp. 5–26, DOI: 10.33223/epj/170758.
 
27.
Litvinenko, V. 2020. The role of hydrocarbons in the global energy agenda: the focus on liquefied natural gas. Resources 9(5), DOI: 10.3390/resources9050059.
 
28.
Maroušek et al. 2023a – Maroušek, J., Gavurová, B., Strunecký, O., Maroušková A., Sekar, M. and Vochozka, M. 2023. Techno-economic identification of production factors threatening the competitiveness of algae biodiesel. Fuel 344, DOI: 10.1016/j.fuel.2023.128056.
 
29.
Maroušek et al 2023b – Maroušek, J., Maroušková, A., Gavurová, B., Tuček, D. and Strunecký, O. 2023. Competitive algae biodiesel depends on advances in mass algae cultivation. Bioresource Technology 374, DOI: 10.1016/j.biortech.2023.128802.
 
30.
Mills, M.P. 2019. The “New Energy Economy”: An Exercise in Magical Thinking: Report. Manhattan Institute for Policy Research, March 2023.
 
31.
Moiseichenko, V.F. and Yeshchenko, V.O. 1994. Basics of scientific research in agronomy. Kyiv: Higher school.
 
32.
Nebeská et al. 2019 – Nebeská, D., Trögl, J., Zofkova, D., Voslarova, A., Stojdl, J. and Pidlisnyuk, V. 2019. Calorific values of Miscanthus x giganteus biomass cultivated under suboptimal conditions in marginal soils. Studia Oecologica 13(1), pp. 61–67, DOI: 10.21062/ujep/429.2020/a/1802-212X/SO/13/1/61.
 
33.
Nedilska, U.I. 2021. Features of cultivation and yield potential of energy crops. Podilsky Visnyk: Agriculture, Technology, Economy 34, pp. 45–51, DOI: 10.37406/2706-9052-2021-1-6.
 
34.
OECD 2021. OECD Anti-Corruption Review of the Energy Sector in Ukraine. [Online] https://www.oecd.org/corruptio... [Accessed: 2024-11-05].
 
35.
Palamarchuk et al. 2023 – Palamarchuk, V.D., Krychkovskyi, V.Yu., Rudska, N.O. and Kolisnyk, O.M. 2023. Advanced technologies for growing vegetable crops and corn using digestate of biogas plants. Vinnytsia: Printing house “Druk”.
 
36.
Pryshliak et al. 2022 – Pryshliak, N., Bondarenko, V., Sokoliuk, S. and Brovarets, O. 2022. The formation of a bioenergy cluster for the production of biofuels from agricultural crops and waste: the experience of Ukraine. Polityka Energetyczna – Energy Policy Journal 25(4), pp. 149–164, DOI: 10.33223/epj/156210.
 
37.
Roik et al. 2013 – Roik, M.V., Kurylo, V.L., Humentyk, M.Ya. and Hanzhenko, O.M. 2013. Phytoenergy crops. Agronomist 3, 193.
 
38.
Roik et al. 2019 – Roik, M.V., Sinchenko, V.M., Ivashchenko, O.O. et al. 2019. Miscanthus in Ukraine. Kyiv: CP “Comprint” LLC.
 
39.
Ushkarenko et al. 2016 – Ushkarenko O.V. et al. 2016. Scientific research in agronomy: a study guide. Kherson: Grin D. S.
 
40.
Volkodav, V.V. 2001. Methodology of state variety testing of crops (cereals, cereals and legumes). Kyiv.
 
41.
Voća et al. 2021 – Voća, N., Leto, J., Karažija, T., Bilandžija, N., Peter, A., Kutnjak, H., Šurić, J. and Poljak, M. 2021. Energy Properties and Biomass Yield of Miscanthus x Giganteus Fertilized by Municipal Sewage Sludge. Molecules 26(14), DOI: 10.3390/molecules26144371.
 
42.
Yasnolob et al. 2019 – Yasnolob, I.O., Chaika, T.O. and Horb, O.O. 2019. Alternative energy sources in increasing energy efficiency and energy independence of rural areas: collective. Poltava: “Astraya” Publishing House.
 
43.
Yastremska et al. 2017 – Yastremska, L.S., Pryshliak, R.I. and Fedoniuk, Yu.V. 2017. Miscanthus as an energy crop for biofuel production. Problems of Ecological Biotechnology 1. [Online] http://nbuv.gov.ua/UJRN/peb_20... [Accessed: 2024-10-15].
 
eISSN:2720-569X
ISSN:1429-6675
Journals System - logo
Scroll to top