The capture of carbon dioxide from flue gases in a hybrid process
More details
Hide details
Polityka Energetyczna – Energy Policy Journal 2011;14(2):427–439
Directive 2009/31/WE concerning geological storage of carbon dioxide (the so-called CSS Directive) is yet another step taken by the EU in limiting CO2 emissions. Since free emission quotas are going to be phased out, our energy sector will be compelled to implement the various CO2 abatement options or, alternatively, buy emission permits. The present study describes a technique for the removal of CO2 from flue gases via a hybrid process which combines pressure swing adsorption (PSA) and membrane separation. The scheme of the process is shown in Fig. 1. The procedure for selecting an appropriate adsorbent for the PSA unit is discussed. In Fig. 2 experimental CO2 adsorption isotherms are shown for a temperature of 20C. In Fig. 3 a dependence is presented of the CO2/N2 selectivity coefficient on pressure (Eq. 1) for both zeolite molecular sieves (ZMS) 13X and activated carbons. It is found that, from the standpoint of CO2 separation efficiency, ZMS 13X perform better than the activated carbons studied. In Table 1 the proposed PSA cycle is shown. Based on extensive simulations the efficiency of the PSA unit is assessed. As can be seen from Fig 4, at feed flow rates below 7.5 mn 3/h it is possible to obtain an enriched product that contains over 70 vol. % of CO2, with an almost complete recovery. In addition, experiments were carried out for the separation of a mixture containing 70% of CO2 and 30% of N2, using commercial membrane modules. Figs. 5, 6 and 7 shows, respectively, permeate and retentate CO2 concentrations and the cut ratio as functions of the pressure difference between the feed side and the permeate side of the module (p). It is concluded that the membrane unit can increase the concentration of carbon dioxide from 70% to over 95%, which is quite sufficient in terms of transport and storage. Based on the technique proposed in this study a demonstration installation is currently under construction in the Institute of Chemical Engineering, Polish Academy of Sciences. Also, a versatile numerical simulator for the hybrid CO2 separation is being developed.
Koncepcja wydzielania ditlenku węgla ze spalin w procesie hybrydowym
wydzielanie ditlenku węgla, proces hybrydowy, adsorpcja zmiennociśnieniowa
Jedną z dróg ograniczania emisji ditlenku węgla jest usuwanie go ze strumieni gazów odlotowych. W niniejszej pracy przedstawiono koncepcję wydzielania CO2 ze spalin w procesie hybrydowym, łączącym adsorpcję zmiennociśnieniową (PSA) i separację membranową. W szczególności omówiono podstawowe założenia obu węzłów separacji, sformułowane na podstawie analizy literatury przedmiotu oraz wyników własnych badań doświadczalnych i symulacji numerycznych. Stwierdzono, że w proponowanym układzie możliwy będzie prawie 100% odzysk ditlenku węgla w strumieniu gazu o stężeniu CO2 wynoszącym powyżej 95% z mieszaniny zawierającej 13,3 % CO2 i 86,7 % N2. Na podstawie przedstawionej w tej pracy koncepcji wydzielania ditlenku węgla ze spalin budowana jest w Instytucie Inżynierii Chemicznej PAN w Gliwicach instalacja demonstracyjna oraz opracowywany jest symulator numeryczny procesu hybrydowego.
METZ B., DAVIDSON O., de CONINCK H., LOOS M., MEYER L. (Eds.) 2005 – IPCC Special Report. Carbon Dioxide Capture and Storage, Cambridge University Press, Cambridge.
SIRIWARDANE R.V., SHEN M.-S., FISHER E.P., POSTON J.A., 2001 – Adsorption of CO2 on molecular sieves and activated carbon. Energy and Fuels Vol. 15, s. 279–284.
CHUE K.T., KIM J.N., YOO Y.J., CHO S.H., YANG R.T. 1995 – Comparison of activated carbon and zeolite 13X for CO2 recovery from flue gas by pressure swing adsorption. Ind. Eng. Chem. Res. Vol. 34, s. 591–598.
HOFFMAN J.S., FAUTH D.J., PENNLINE H.W., 2002 – Development of novel dry regenerable sorbents for CO2 capture. 19thAnnual International Pittsburgh Coal Conference, Pittsburgh,USA.
TAŃCZYK M., JASCHIK M., WARMUZIŃSKI K., JANUSZ-CYGAN A., JASCHIK J., 2010 – Wyznaczanie właściwości separacyjnych adsorbentów do procesów wydzielania ditlenku węgla ze strumieni spalin. Inżynieria i Aparatura Chemiczna vol. 49, s. 82–83.
NA B.-K., KO K.-K., EUM H.-M., LEE H., SONG H.K., 2001 – CO2 recovery from flue gas by PSA process using activated carbon. Korean J. Chem. Eng. Vol. 18, s. 220–227.
RUTHVEN D.M., FAROOQ S., KNAEBEL K.S., 1994 – Pressure Swing Adsorption, VCH Publishers, New York.
KIKKINIDES E.S., YANG R.T., CHO S.H., 1993 – Concentration and recovery of CO2 from flue gas by pressure swing adsorption. Ind. Eng. Chem. Res. Vol. 32, s. 2714–2720.
KIM J.-N., PARK J.H., BEUM H.T., HAN S.-S., CHO S.-H., 2002 – PSA process for recovery of carbon dioxide. Sixth International Conference on Greenhouse Gas Control Technologies, Kyoto, Japan.
CHOU C., CHEN C. 2004 – Carbon dioxide recovery by vacuum swing adsorption. Sep. Pur. Tech. Vol. 39, s. 51–65.
CHANG D., MIN J., MOON K., PARK Y.-K., JEON J.-K., IHM S.-K., 2004 – Robust numerical simulation of pressure swing adsorption process with strong adsorbate CO2. Chem. Eng. Sci. Vol. 59, s. 2715–2725.
YANG R.T., 1997 – Gas Separation by Adsorption Processes, Imperial College Press, London.
ISHIBASHI M., OTA H., AKUTSU N., UMEDA S., TAJIKA M., IZUMI J., YASUTAKE A., KABATA T., KAGEYAMA Y., 1996 – Technology for removing carbon dioxide from power plant flue gases by physical adsorption method. En. Conv. Mgmt Vol. 37, s. 929–933.
POWELL C.E., QIAO G.G., 2006 – Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. J. Mem. Sci. Vol. 279, s. 1–49.
SCHOLES C.A., KENTISH S.E., STEVENS G.W., 2008 – Carbon dioxide separation through polymeric membrane systems for flue gas applications. Rec. Pat. Chem. Eng. Vol. 1, s. 52–66.
BERNARDO P., DRIOLI E., GOLEMME G., 2009 – Membrane Gas Separation: A Review/State of the Art. Ind. Eng. Chem. Res. Vol. 48, s. 4638–4663.
ZHAO L., RIENSCHE E., MENZER R., BLUM L., STOLTEN D., 2008 – A parametric study of CO2/N2 gas separation membrane processes for post-combustion capture. J. Mem. Sci. Vol. 325, s. 284–294.
SIRCAR S., WALDRON W.E., RAO M.B., ANAND M., 1999 – Hydrogen production by hybrid SMR-PSA-SSF membrane system. Sep.Pur.Tech. Vol. 17, s. 11–20.
ESTEVES I.A.A.C., MOTA J.P.B., 2007 – Gas separation by a novel hybrid membrane/pressure swing adsorption process. Ind. Eng. Chem. Res. Vol. 46, s. 5723–5733.
ZHAO L., MENZER R., RIENSCHE E., BLUM L., STOLTEN D., 2009 – Concepts and investment cost analyses of multi-stage membrane systems used in post-combustion processes. Energy Procedia Vol.1, s. 269–278.
PARK J.-H., BEUM H.-T., KIM J.-N., CHO S.-H., 2002 – Numerical analysis on the power consumption of the PSA process for recovering CO2 from flue gas. Ind. Eng. Chem. Res. Vol. 41, s. 4122–4131.
TAŃCZYK M., WARMUZIŃSKI K., JASCHIK M., WOJDYŁA A., GIEŁZAK K., 2010 – Separation of carbon dioxide fromflue gases by pressure swing adsorption.Chem. Proc. Eng.Vol. 31, s. 359–372.
HO M.T., ALLINSON G.W., WILEY D.E., 2008 – Reducing the cost of CO2 capture from flue gases using membrane technology. Ind. Eng. Chem. Res. Vol. 47, s. 1562–1568.
FAVRE E., 2007 – Carbon dioxide recovery from post-combustion processes: Can gas permeation membranes compete with absorption? J. Mem. Sci. Vol. 294, s. 50–59.
BOUNACEUR R., LAPE N., ROIZARD D., VALLIERES C., FAVRE E., 2006 – Membrane processes for post-combustion carbon dioxide capture: A parametric study. Energy Vol. 31, s. 2220–2234.
RUTHVEN D.M., 1984 – Principles of Adsorption and Adsorption Processes, John Wiley & Sons, New York.
KOSTOWSKI E., 1986 – Przepływ ciepła. Dział Wydawnictw Politechniki Śląskiej, Gliwice.
WARMUZIŃSKI K., SODZAWICZNY W., 1999 – Effect of adsorption pressure on methane purity during PSA separations of CH4/N2 mixtures. Chem. Eng. Proc. Vol. 38 (1), s. 55–60.
HO M.T., LEAMON G., ALLINSON G.W., WILEY D.E., 2006 – Economics of CO2 and mixed gas geosequestration of flue gas using separation membranes. Ind. Eng. Chem. Res. Vol. 45, s. 2546–2552.