ORIGINAL PAPER
The improvement of water intake structures for energy and irrigation systems of mountainous and foothill rivers
More details
Hide details
1
Azerbaijan Scientific-Research and Design-Prospecting Power Engineering Institute, Azerbaijan
Submission date: 2023-08-09
Final revision date: 2023-08-31
Acceptance date: 2023-11-15
Publication date: 2024-03-28
Polityka Energetyczna – Energy Policy Journal 2024;27(1):119-138
KEYWORDS
TOPICS
ABSTRACT
The purpose of this study is to solve the efficiency and reliability problems of upstream water intake structures for energy and irrigation systems in the region of the Republic of Azerbaijan. Among the methods used in the study, experimental, analytical, and modelling methods should be distinguished. During the study, analyses and field investigations of main structures, and energy and irrigation systems in the foothills were conducted to identify the reasons for the low efficiency and reliability of existing old water intake structures and reduce their negative impact on the environment. The results of the study showed that many water intake structures built on small rivers are not only in poor working condition but also do not meet modern environmental requirements. Many of these structures were built more than thirty years ago and have not been modernized or reconstructed in accordance with new technologies and requirements. As a result of the study, recommendations were prepared for the design of new water intake structures that meet all modern environmental requirements and guarantee the more efficient use of water resources. These new facilities will also help to reduce water losses during the overflow process, which will make the use of water more cost-effective. Additionally, one of the main outcomes is the developed useful model, which pertains to the field of hydroengineering construction for water intake from mountain and foothill rivers, serving as an additional barrier to reduce the influx of large sediment into the reservoir.
METADATA IN OTHER LANGUAGES:
Polish
Ulepszenie struktur ujęcia wody dla systemów energetycznych i nawadniających rzek górskich i podgórskich
zaopatrzenie w wodę, budowle hydroelektryczne, odbudowa, budowa, rozwój systemu
Celem niniejszego artykułu jest rozwiązanie problemów związanych z wydajnością i niezawodnością struktur poboru wody dla systemów energetycznych i irygacyjnych w regionie Azerbejdżanu. Wśród metod wykorzystanych w badaniu należy wyróżnić metody eksperymentalne, analityczne i modelowania. Podczas badania przeprowadzono analizy i badania terenowe głównych struktur oraz systemów energetycznych i nawadniających na pogórzu w celu zidentyfikowania przyczyn małej wydajności istniejących starych struktur poboru wody oraz zmniejszenia ich negatywnego wpływu na środowisko. Wyniki badań wykazały, że wiele budowli hydrotechnicznych wybudowanych na małych rzekach jest nie tylko w złym stanie technicznym, ale również nie spełnia współczesnych wymogów środowiskowych. wymogów środowiskowych. Wiele z tych obiektów zostało wybudowanych ponad trzydzieści lat temu i nie zostało zmodernizowanych lub przebudowanych zgodnie z nowymi technologiami i wymogami. W wyniku przeprowadzonych badań opracowano zalecenia dotyczące projektowania nowych ujęć wody, które spełniają wszystkie współczesne wymogi środowiskowe i gwarantują bardziej efektywne wykorzystanie zasobów wodnych. Nowe obiekty przyczynią się również do zmniejszenia strat wody podczas procesu przelewania, co sprawi, że korzystanie z wody będzie bardziej opłacalne. Ponadto jednym z głównych rezultatów jest opracowany użyteczny model, który odnosi się do dziedziny budownictwa hydrotechnicznego dla poboru wody z rzek górskich i podgórskich, służąc jako dodatkowa bariera ograniczająca napływ dużych osadów do zbiornika.
REFERENCES (34)
1.
Abbasov et al. 2022 – Abbasov, R., Karimov, R. and Jafarova, N. 2022. Ecosystem and socioeconomic values of clean water. [In:] Ecosystem Services in Azerbaijan, pp. 71–121, Cham: Springer.
2.
Abilov, R.S. 2020. Improving the anti-filtration measure and the new design of the ponura and apron. The Scientific Heritage 50, pp. 29–31.
3.
Abilov, R.S. 2023. Water intake structure on mountain and foothill rivers for small hydroelectric power plants. Innovation and Investment 2, pp. 159–163.
4.
Ahmadi et al. 2023 – Ahmadi, S.A., Hekmatara, H., Noorali, H., Campana, M., Sadeghi, A. and Pazhoh, F. 2023. The hydropolitics of Upper Karabakh, with emphasis on the border conflicts and wars between Azerbaijan and Armenia. GeoJournal 88, pp. 1873–1888, DOI: 10.1007/s10708-022-10714-4.
5.
Ashraf, A. and Batool, A. 2019. Evaluation of glacial resource potential for sustaining kuhl irrigation system under changing climate in the Himalayan region. Journal of Mountain Science 16, pp. 1150–1159, DOI: 10.1007/s11629-018-5077-0.
6.
Bagasharova et al. 2015 – Bagasharova, Z.T., Abdelmaksoud, A.S., Abdugaliyeva, G.Y., Sabirova, L.B. and Moldabayeva, G.Z. 2015. Recovery of water aquifers after the impact of in-situ leaching of Uranium. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM 1(4), pp. 19–26.
7.
Bahretdinova et al. 2014 – Bahretdinova, H.A., Khasanov, B.U. and Umarov, S.R. 2014. Environmental management. Tashkent: TIIM.
8.
Bazarov et al. 2021 – Bazarov, D., Markova, I., Norkulov, B. and Vokhidov, O. 2021. Hydraulic aspects of the layout of head structures during water intake from lowland rivers. IOP Conference Series: Materials Science and Engineering 1015, DOI: 10.1088/1757-899X/1015/1/012041.
9.
Bjornlund et al. 2019 – Bjornlund, V., Bjornlund, H. and Rooyen, A.F. 2019. Exploring the factors causing the poor performance of most irrigation schemes in post-independence sub-Saharan Africa. International Journal of Water Resources Development 36(1), pp. 54–101, DOI: 10.1080/07900627.2020.1808448.
10.
Bokiev et al. 2023 – Bokiev, A., Sultonov, S., Nuralieva, N. and Botirov, A. 2023. Design of mobile electricity based on solar and garland micro hydro power plant for power supply in Namangan region mountain areas. E3S Web of Conferences 365, DOI: 10.1051/e3sconf/202336504003.
11.
Buktukov et al. 2020 – Buktukov, N.S., Buktukov, B.Z. and Moldabayeva, G.Z. 2020. Sail-aerodynamic wind power station with automatically changing blade-swept area. International Journal of Mechanical and Production Engineering Research and Development 10(3), pp. 911–920.
12.
Crook et al. 2020 – Crook, D.S., Tripathi, S.C. and Jones, R.T. 2020. Traditional design principles of a groundwater irrigation system in the foothills of the Western Ghats of Southwest India. Mountain Research and Development 40(3), pp. 21–30, DOI: 10.1659/MRD-JOURNAL-D-19-00065.1.
13.
Evett et al. 2020 – Evett, S.R., Colaizzi, P.D., Lamm, F.R., O’shaughnessy, S.A., Heeren, D.M., Trout, T.J., Kranz, W.L. and Lin, X. 2020. Past, present, and future of irrigation on the U.S. great plains. ASABE 63(3), pp. 703–729, DOI: 10.13031/trans.13620.
14.
Giri et al. 2022 – Giri, I., Ritika, K. C., Udhab, R. and Khadka, K. 2022. Water quality status in Bagmati river of Kathmandu valley, Nepal. In: Ecological Significance of River Ecosystems, pp. 481–502. Amsterdam: Elsevier.
15.
Heiß et al. 2020 – Heiß, L., Bouchaou, L., Tadoumant, S. and Reichert, B. 2020. Multi-tracer approach for assessing complex aquifer systems under arid climate: Case study of the River Tata catchment in the Moroccan Anti-Atlas Mountains. Applied Geochemistry 120, DOI: 10.1016/j.apgeochem.2020.104671.
16.
Imanaliyev et al. 2022 – Imanaliyev, T., Koybakov, S., Karlykhanov, O., Amanbayeva, B. and Bakiyev, M. 2022. Prospects for the development of water resources management in the south of Kazakhstan. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences 6(456), pp. 80–95, DOI: 10.32014/2518-170X.240.
17.
Jiaoyou et al. 2019 – Jiaoyou, Zh., Yaning, Ch., Zhi, L., Jinxi, S., Gonghuan, F., Yupeng, L. and Qifei, ZH. 2019. Study on the utilization efficiency of land and water resources in the Aral Sea Basin, Central Asia. Sustainable Cities and Society 51, DOI: 10.1016/j.scs.2019.101693.
18.
Juan et al. 2020 – Juan, L., Yangjie, L. and Chendi, SH. 2020. Research on integrated ecological management engineering model of soil organic reconstruction. Journal of Physics: Conference Series 1549, DOI: 10.1088/1742-6596/1549/2/022088.
19.
Koibakov, S.M. and Umirkhanov, M.G. 2013a. Icebreaker unit. World Applied Sciences Journal 25(8), pp. 1251–1254, DOI: 10.5829/idosi.wasj.2013.25.08.13423.
20.
Koibakov, S.M. and Umirkhanov, M.G. 2013b. Model research of ice jams. World Applied Sciences Journal 25(8), pp. 1158–1160, DOI: 10.5829/idosi.wasj.2013.25.08.13382.
21.
Koibakov et al. 2015 – Koibakov, S., Meldebekova, G. and Maliktaiuly, M. 2015. Warning hydraulic facilities from the ground in drifts deflation soils. [In:] 15th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, ARC 2015: New Innovations and Sustainability, pp. 382–385. Fukuoka, Kyushu: Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, DOI: 10.3208/jgssp.KAZ-19.
22.
Koybakov et al. 2020 – Koybakov, S.M., Maliktaiuly, M., Joldassov, S.K., Sarbasova, G.A. and Yeskermessov, Z. 2020. New methods to protect year-around operation canals from snow. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences 6(444), pp. 102–109, DOI: 10.32014/2020.2518-170X.136.
23.
Li et al. 2020 – Li, Y., Storozum, M. J., Jia, X., Wang, X. and Frachetti, M. D. 2020. Reconceptualizing water history of Chinese Central Asia: Hydraulic modeling of the early 1st mill. AD irrigation system at Mohuchahangoukou-4 (MGK4), Xinjiang, China. Journal of Archaeological Science: Reports 33, DOI: 10.1016/j.jasrep.2020.102534.
24.
Mustafayeva et al. 2022 – Mustafayeva, E., Karimova, N., Rahimova, K., Novruzova, U., İsmayilzade, M. and Alirzayeva, L. 2022. Mathematical modeling of damage of a cylindrically isotropic thick pipe under a complex stress state. Global and Stochastic Analysis 9(1), pp. 47–55.
25.
Ostanin, V. 2022. Effects of Repulsion and Attraction between Rotating Cylinders in Fluids. Scientific Herald of Uzhhorod University. Series Physics (51), pp. 39–47, DOI: 10.54919/2415-8038.2022.51.39-47.
26.
Qu et al. 2020 – Qu, W., Tan, Ya., Li, Zh., Aarnoudse, E. and Tu, Q. 2020. Agricultural water use efficiency – A case study of inland-river basins in Northwest China. Sustainability 12(23), DOI: 10.3390/su122310192.
27.
Salokhiddinov, A.T. and Hoshimkhuzhaev, M.P. 2020. Basin planning and water resources management. Tashkent: TIIIMSH.
28.
Serikbaev et al. 2020 – Serikbaev, B.S. Dustnazarova, S.A. and Shaimanov, N.O. 2020. Operation and automation of irrigation networks. Tashkent: TIIIMSH.
29.
Serikbaev et al. 2019 – Serikbaev, B.S., Dustnazarova, S.A. and Mukhammadiyeva, M.T. 2019. Automation of operation of irrigation and drainage systems. Tashkent: TIIIMSH.
30.
Shukurlaev et al. 2007 – Shukurlaev, Kh., Baraev, A. and Mamataliev, A. 2007. Agricultural hydrotechnical melioration. Tashkent: TIIM.
31.
Singh et al. 2021 – Singh, R., Bisht, M. and Singh, M. 2021. Emerging trends in hydropower energy. [In:] Emerging Trends in Hydropower Energy, pp. 43–51, London: CRC Press.
32.
Tariq et al. 2021 – Tariq, M.R., Wangchuk, K.I. and Mutti, N.U. 2021. A critical review of water resources and their management in Bhutan. Hydrology 8(1), DOI: 10.3390/hydrology8010031.
33.
Tu et al. 2023 – Tu, L.T., Phap, V.M. and Huong, N.T.T. 2023. A study on loan repayment options for power plant construction: A case study of the Son la hydropower plant, Vietnam. Polityka Energetyczna – Energy Policy Journal 26(2), pp. 121–140, DOI: 10.33223/epj/163506.
34.
Weerahewa et al. 2023 – Weerahewa, J., Timsina, J., Wickramasinghe, C., Mimasha, S., Dayananda, D. and Puspakumara, G. 2023. Ancient irrigation systems in Asia and Africa: Typologies, degradation and ecosystem services. Agricultural Systems 205, DOI: 10.1016/j.agsy.2022.103580.