ORIGINAL PAPER
Comparative analysis of district heating markets: examining recent prices, regulatory frameworks, and pricing control mechanisms in Poland and selected neighbouring countries
More details
Hide details
1
Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Poland
2
Veolia Energia Polska SA, Poland
These authors had equal contribution to this work
Submission date: 2023-09-25
Final revision date: 2023-11-16
Acceptance date: 2023-11-16
Publication date: 2024-03-27
Corresponding author
Aleksandra Komorowska
Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Wybickiego 7A, 31-261, Kraków, Poland
Polityka Energetyczna – Energy Policy Journal 2024;27(1):95-118
KEYWORDS
TOPICS
ABSTRACT
Recent dynamic changes in global fossil fuels markets and the European carbon dioxide emission allowances system have significantly impacted the energy sectors. These fluctuations also influence district heating (DH) markets where coal and natural gas remain dominant energy vectors in numerous European countries. District heating markets are distinct from other commodity markets due to their local nature and distribution requirements. Consequently, they can operate under various market models and have different price design policies depending on the country and region. With these considerations, this study aims to review and analyse the current market models and regulations of price formulation in the context of final prices in selected district heating markets. The primary objective is to conduct an in-depth analysis of the key district heating markets in Poland and compare the outcomes with the markets of neighbouring countries, including the Czech Republic, Slovakia, Lithuania, Latvia, Estonia, and Germany. Poland is taken as an example due to its high dependence on fossil fuels and its vulnerability to current global price fluctuations. The results indicate that Poland has one of the most regulated district heating markets, and these regulations can impact the profitability of district heating companies with high prices of fuel and carbon certificates observed in global markets. To create incentives for potential investors and incumbent companies to develop more sustainable and low-emission district heating markets in Poland – where energy transition processes are still underway – it is recommended to increase the frequency of formulation and approval of tariffs.
ACKNOWLEDGEMENTS
This work was carried out as part of the statutory activity of the Mineral and Energy Economy Research Institute of the Polish Academy of Sciences.
METADATA IN OTHER LANGUAGES:
Polish
Analiza porównawcza rynków ciepła systemowego: badanie cen, ram regulacyjnych oraz mechanizów kontroli cen w Polsce i wybranych krajach sąsiadujących
ciepło sieciowe, ciepło, taryfy ciepłownicze, ex-ante, ex-post, rynek
Obserwowane w ostatnim czasie dynamiczne zmiany na globalnych rynkach paliw kopalnych oraz uprawnień do emisji dwutlenku węgla mają znaczący wpływ na sektory energetyczne. Fluktuacje te wpływają także na rynki ciepła systemowego, gdzie węgiel i gaz ziemny nadal pozostają dominującymi nośnikami energii pierwotnej w wielu krajach europejskich. Rynki ciepła systemowego różnią się od rynków innych produktów ze względu na ich lokalny charakter i wymagania związane z transportem i dystrybucją. W związku z tym, w zależności od kraju, mogą one funkcjonować w różnych modelach rynkowych oraz mieć odmienne polityki kształtowania cen. W związku z powyższym, niniejszy artykuł ma na celu przegląd i analizę obecnych modeli rynkowych oraz regulacji kształtowania cen w kontekście cen na wybranych rynkach ciepła systemowego. Głównym celem jest przeprowadzenie dogłębnej analizy największych rynków w Polsce i porównanie wyników z sąsiadującymi państwami, tj. z Czechami, Słowacją, Litwą, Łotwą, Estonią i Niemcami. Polska została wybrana jako przykład ze względu na znaczną zależność od paliw kopalnych i podatność na obecne fluktuacje cen na rynkach międzynarodowych. Wyniki przeprowadzonej analizy wskazują, że Polska ma jeden z najbardziej uregulowanych rynków ciepła sieciowego, a regulacje te mogą wpływać na rentowność firm ciepłowniczych. W celu wypracowania zachęt dla potencjalnych inwestorów i obecnych przedsiębiorstw ciepłowniczych do rozwijania zrównoważonych i niskoemisyjnych systemów ciepłowniczych, rekomendowane jest rozważenie możliwości zwiększanie częstotliwości formułowania i zatwierdzania taryf ciepłowniczych.
REFERENCES (70)
1.
250/2012 Z. z – Temporary version of the regulation effective from 01.01.2021 to 31.12.2021 (Časová verzia predpisu účinná od 01.01.2021 do 31.12.2021). [Online]
https://www.slov-lex.sk/pravne... [Accessed: 2023-11-13] (in Slovak).
2.
Act No. 458/2000. Act on the conditions of business and on the performance of state administration in the energy sector and on the amendment of certain laws (Zákon č. 458/2000. Zákon o podmínkách podnikání a o výkonu státní správy v energetických odvětvích a o změně některých zákonů). [Online]
https://www.zakonyprolidi.cz/c... [Accessed: 2023-11-04] (in Czech).
4.
Atănăsoae, P. 2022. Allocation of Joint Costs and Price Setting for Electricity and Heat Generated in Cogeneration. Energies 16(1), DOI: 10.3390/EN16010134.
5.
Buffa et al. 2019 – Buffa, S., Cozzini, M., D’Antoni, M., Baratieri, M. and Fedrizzi, R. 2019. 5th generation district heating and cooling systems: A review of existing cases in Europe. Renewable and Sustainable Energy Reviews 104, pp. 504–522, DOI: 10.1016/J.RSER.2018.12.059.
6.
Colmenar-Santos et al. 2016 – Colmenar-Santos, A., Rosales-Asensio, E., Borge-Diez, D. and Blanes-Peiró, J.J. 2016. District heating and cogeneration in the EU-28: Current situation, potential and proposed energy strategy for its generalisation. Renewable and Sustainable Energy Reviews 62, pp. 621–639, DOI: 10.1016/J.RSER.2016.05.004.
7.
Djørup et al. 2020 – Djørup, S., Sperling, K., Nielsen, S., Østergaard, P.A., Thellufsen, J.Z., Sorknæs, P., Lund, H. and Drysdale, D. 2020. District Heating Tariffs, Economic Optimisation and Local Strategies during Radical Technological Change. Energies 13(5), DOI: 10.3390/EN13051172.
8.
Egüez, A. 2021. District heating network ownership and prices: The case of an unregulated natural monopoly. Util Policy 72, DOI: 10.1016/J.JUP.2021.101252.
10.
Energy Regulatory Office 2022. Decision of the President of the Energy Regulatory Office after considering the application of MPO Warsaw. [Online]
https://bip.ure.gov.pl/downloa... [Accessed: 2023-11-13] (in Polish).
12.
ERU 2022. Interim report on the development of thermal energy price changes for the past part of 2022. (Průběžna zpráva o vývoji změn cen tepelné energie za uplynulou část roku 2022). [Online]
https://www.eru.cz/sites/defau... [Accessed: 2023-11-13] (in Czech).
13.
ERU 2023. Preliminary prices of thermal energy in the Czech Republic as of 01.01.2023 (Předběžné ceny tepelné energie v ČR k 01.01.2023). [Online]
https://www.eru.cz/predbezne-c... [Accessed: 2023-11-13] (in Czech).
14.
European Commission 2021. District Heating and Cooling Markets and Regulatory Frameworks under the Revised Renewable Energy Directive. [Online]
https://www.euroheat.org/resou... [Accessed: 2023-11-13].
15.
Federal Ministry of Justice 1976. Ordinance on general conditions for the supply of district heating (Verordnung Über Allgemeine Bedingungen Für Die Versorgung Mit Fernwärme). [Online]
https://www.gesetze-im-interne... [Accessed: 2023-11-13] (in German).
17.
Gorroño-Albizu, L. and de Godoy, J. 2021. Getting fair institutional conditions for district heating consumers: Insights from Denmark and Sweden. Energy 237, DOI: 10.1016/J.ENERGY.2021.121615.
18.
Hall, L.M.H. and Buckley, A.R. 2016. A review of energy systems models in the UK: Prevalent usage and categorisation. Applied Energy 169, pp. 607–628, DOI: 10.1016/J.APENERGY.2016.02.044.
19.
Hubert et al. 2023 – Hubert, W., Kowalik, W., Komorowska, A., Kryzia, D., Pepłowska, M. and Gawlik, L. 2023. Territorial trauma or modernization experience? The Kraków Metropolitan Area and Silesia as case studies affected by intensive energy transition processes. Gospodarka Surowcami Mineralnymi – Mineral Resources Management 39(3), pp. 125–148, DOI: 10.24425/gsm.2023.147552.
21.
Jaskólski et al. 2021 – Jaskólski, M., Bućko, P., Stievano, S. and Trinchero, R. 2021. Modelling Long-Term Transition from Coal-Reliant to Low-Emission Power Grid and District Heating Systems in Poland. Energies 14(24), DOI: 10.3390/EN14248389.
22.
Journal of Laws 1997 No. 54 item 348. Act of Energy Law.
23.
Journal of Laws 2020 item 718. Regulation on Detailed Rules for shaping and calculating tariffs and settlements for heat supply.
24.
Kaszyński et al. 2021 – Kaszyński, P., Komorowska, A., Zamasz, K., Kinelski, G. and Kamiński, J., 2021. Capacity Market and (the Lack of) New Investments: Evidence from Poland. Energies 14(23), DOI: 10.3390/EN14237843.
25.
Kinelski et al. 2021 – Kinelski, G., Stęchły, J., Sienicki, A., Czornik, K. and Borkowski, P. 2021. Application of Smart Technologies in Metropolis GZM to Reduce Harmful Emissions in District Heating Systems. Energies 14(22), DOI: 10.3390/EN14227665.
26.
Kinelski et al. 2022 – Kinelski, G., Stęchły, J. and Bartkowiak, P., 2022. Various Facets of Sustainable Smart City Management: Selected Examples from Polish Metropolitan Areas. Energies 15(9), DOI: 10.3390/EN15092980.
27.
Kirschen, D. and Strbac, G., 2019. Fundamentals of Power System Economics. Second edition, John Wiley & Sons Ltd.
28.
Koďousková et al. 2023 – Koďousková, H., Ilavská, A., Stašáková, T., David, D. and Osička, J. 2023. Energy transition for the rich and energy poverty for the rest? Mapping and explaining district heating transition, energy poverty, and vulnerability in Czechia. Energy Research & Social Science 100, DOI: 10.1016/J.ERSS.2023.103128.
29.
Leppänen et al. 2021 – Leppänen, J., Hillberg, S., Hovi, V., Komu, R., Kurki, J., Lauranto, U., Oinonen, A., Peltonen, J., Rintala, A., Tulkki, V., Tuominen, R. and Valtavirta, V. 2021. A Finnish District Heating Reactor: Background and General Overview. International Conference on Nuclear Engineering, Proceedings, ICONE 1, DOI: 10.1115/ICONE28-64346.
31.
Magnusson, D. 2012. Swedish district heating: A system in stagnation: Current and future trends in the district heating sector. Energy Policy 48, pp. 449–459, DOI: 10.1016/J.ENPOL.2012.05.047.
32.
Majchrzak et al. 2021 – Majchrzak, K., Pepłowska, M. and Olczak, P. 2021. Heating films as an element of combined photovoltaic and heating systems in residential buildings. Polityka Energetyczna – Energy Policy Journal 24(3), pp. 29–42, DOI: 10.33223/epj/135770.
33.
Manz et al. 2021 – Manz, P., Kermeli, K., Persson, U., Neuwirth, M., Fleiter, T. and Crijns‐graus, W. 2021. Decarbonizing District Heating in EU-27 + UK: How Much Excess Heat Is Available from Industrial Sites? Sustainability 13, DOI: 10.3390/SU13031439.
34.
Matuszewska et al. 2020 – Matuszewska, D., Kuta, M. and Olczak, P. 2020. Techno-Economic Assessment of Mobilized Thermal Energy Storage System Using Geothermal Source in Polish Conditions. Energies 13(13), DOI: 10.3390/EN13133404.
38.
Mirowski, T. and Orzechowska, M. 2015. The use of biomass fuels in individual heating in areas threatened by low emission (Wykorzystanie paliw biomasowych w ogrzewnictwie indywidualnym na obszarach zagrożonych niską emisją). Polityka Energetyczna – Energy Policy Journal 18(4), pp. 75–88 (in Polish).
40.
National Energy Regulator Council 2022. VERT: August heat price statistics in Lithuania (VERT: rugpjūčio mėnesio šilumos kainų statistika Lietuvoje). [Online]
https://www.regula.lt/Puslapia... [Accessed: 2023-11-04] (in Lithuanian).
43.
Pająk et al. 2020 – Pająk, L., Tomaszewska, B., Bujakowski, W., Bielec, B. and Dendys, M. 2020. Review of the Low-Enthalpy Lower Cretaceous Geothermal Energy Resources in Poland as an Environmentally Friendly Source of Heat for Urban District Heating Systems. Energies 13(6), DOI: 10.3390/EN13061302.
44.
Pałka et al. 2023 – Pałka, P., Malec, M., Kaszyński, P., Kamiński, J. and Saługa, P. 2023. District Heating System Optimisation: A Three-Phase Thermo-Hydraulic Linear Model. Energies 16(8), DOI: 10.3390/EN16083316.
45.
Pažėraitė et al. 2022 – Pažėraitė, A., Lekavičius, V. and Gatautis, R. 2022. District heating system as the infrastructure for competition among producers in the heat market. Renewable and Sustainable Energy Reviews 169, DOI: 10.1016/J.RSER.2022.112888.
46.
Pelda et al. 2020 – Pelda, J., Stelter, F. and Holler, S., 2020. Potential of integrating industrial waste heat and solar thermal energy into district heating networks in Germany. Energy 203, DOI: 10.1016/J.ENERGY.2020.117812.
49.
Policy-Framework.pdf [Accessed: 2023-11-04].
51.
Shabanpour-Haghighi, A. and Seifi, A.R. 2016. Effects of district heating networks on optimal energy flow of multi-carrier systems. Renewable and Sustainable Energy Reviews 59, pp. 379–387, DOI: 10.1016/J.RSER.2015.12.349.
52.
Sila, U. and Frohm, E. 2023. Towards net zero in the Czech Republic. OECD Economics Department Working Papers 1754, DOI: 10.1787/7ce7c9dd-en.
56.
Söderholm, P. and Wårell, L, 2011. Market opening and third-party access in district heating networks. Energy Policy 39, pp. 742–752, DOI: 10.1016/J.ENPOL.2010.10.048.
57.
Tereshchenko, T. and Nord, N. 2015. Uncertainty of the allocation factors of heat and electricity production of combined cycle power plant. Applied Thermal Engineering 76, pp. 410–422, DOI: 10.1016/J.APPLTHERMALENG.2014.11.019.
58.
The World Bank 2019. A low-carbon growth study for Slovakia: Implementing the EU 2030 climate and energy policy framework. [Online]
https://documents.worldbank.or... [Accessed: 2024-01-15].
63.
Volkova et al. 2020 – Volkova, A., Latosov, E., Lepiksaar, K. and Siirde, A. 2020. Planning of district heating regions in Estonia. International Journal of Sustainable Planning and Management 27, DOI: DOI: 10.5278/ijsepm.3490.
64.
Wissner, M. 2014. Regulation of district-heating systems. Util Policy 31, pp. 63–73, DOI: 10.1016/J.JUP.2014.09.001.
65.
Wyrwa et al. 2022 – Wyrwa, A., Raczyński, M., Kulik, M., Oluwapelumi, O., Mateusiak, L., Zhang, H. and Kempka, M. 2022. Greening of the District Heating Systems: Case Study of Local Systems. Energies 15(9), DOI: 10.3390/EN15093165.
67.
Ye, X. and Li, C. 2013. A novel evaluation of heat-electricity cost allocation in cogenerations based on entropy change method. Energy Policy 60, pp. 290–295, DOI: 10.1016/J.ENPOL.2013.05.015.
69.
Zheng et al. 2022 – Zheng, W., Zhu, J. and Luo, Q. 2022. Distributed Dispatch of Integrated Electricity-Heat Systems with Variable Mass Flow. IEEE Trans Smart Grid 14(3), DOI: 10.1109/TSG.2022.3210014.