ORIGINAL PAPER
An advanced European overview of the bioenergy efficiency of using digestate from biogas plants when growing agricultural crops
 
More details
Hide details
1
Ministry of Education and Science of Ukraine, Vinnytsia National Agrarian University, Ukraine
 
 
Submission date: 2023-07-03
 
 
Final revision date: 2023-07-30
 
 
Acceptance date: 2023-08-07
 
 
Publication date: 2024-03-27
 
 
Corresponding author
Roman Lohosha   

Міністерство освіти і науки України, Вінницький національний аграрний університет, Сонячна,3, 21000, Вінниця, Ukraine
 
 
Polityka Energetyczna – Energy Policy Journal 2024;27(1):5-26
 
KEYWORDS
TOPICS
ABSTRACT
The paper highlights calculations of bioenergy indicators when growing corn for grain and vegetable crops in Ukraine. The research results indicate the economic benefit of growing these crops for all the variants studied. Our research established that an increase in the bioenergy efficiency of the production of these crops is achieved due to the use of different rates of fertilizer application. The increase in productivity that was obtained as a result of the implementation of farming practices exceeds additional costs associated with the use of fertilizers. This confirms the economic benefit of producing these types of crops due to the enhanced bioenergy efficiency achieved through the optimal application of fertilizer. The conducted research confirms the high energy efficiency of the bio-organic fertilizer (digestate) and the energy-saving technology of growing crops which were studied. High values of the coefficients of energy efficiency were also observed in the variants with the simultaneous application of mineral fertilizers (N90P90K90) and digestate-based bio-organic fertilizer “Efluent” (55.0 t/ha) on experimental sites of corn grown for grain (3.05–3.07), carrot (1.41–1.45) and red beet (1.97–2.00), but the cost of these variants also appeared to be the highest. Scientific research has used new methods and technologies for the effective processing of livestock waste in order to obtain organic fertilizer, which can be used to improve soil fertility and increase crop yields on the one hand, and biogas production as an energy-efficient process that has significant potential for producing ecologically clean and renewable energy on the other. The proposed approach to achieving energy efficiency helps to increase crop yield without increasing fertilization costs.
METADATA IN OTHER LANGUAGES:
Polish
Zaawansowany europejski przegląd efektywności bioenergetycznej wykorzystania pofermentu z biogazowni podczas uprawy roślin rolniczych
poferment, ścieki, bezpieczeństwo energetyczne, efektywność bioenergetyczna, współczynnik efektywności energetycznej
W artykule zwrócono uwagę na obliczenia wskaźników bioenergii podczas uprawy kukurydzy na rośliny zbożowe i warzywne na Ukrainie. Wyniki badań wskazują na korzyść ekonomiczną uprawy tych roślin dla wszystkich badanych wariantów. Z naszych analiz wynika, że wzrost efektywności bioenergetycznej produkcji tych roślin osiągany jest dzięki stosowaniu różnych dawek nawozów. Wzrost produktywności uzyskany w wyniku wdrożenia praktyk rolniczych przekracza dodatkowe koszty związane ze stosowaniem nawozów. Potwierdza to korzyść ekonomiczną wynikającą z uprawy tego typu upraw ze względu na zwiększoną efektywność bioenergetyczną osiągniętą poprzez optymalne zastosowanie nawozów. Przeprowadzone badania potwierdzają wysoką efektywność energetyczną badanego nawozu bioorganicznego (pofermentu) oraz energooszczędną technologię uprawy roślin. Wysokie wartości współczynników efektywności energetycznej zaobserwowano także w wariantach z jednoczesnym zastosowaniem nawozów mineralnych (N90P90K90) i nawozu bioorganicznego na bazie pofermentu „Ścieki” (55,0 t/ha) na obiektach doświadczalnych uprawy kukurydzy na ziarno (3,05–3,07), marchewki (1,41–1,45) i buraka ćwikłowego (1,97–2,00), ale koszt tych wariantów również okazał się najwyższy. W badaniach naukowych wykorzystano nowe metody i technologie efektywnego przetwarzania odchodów zwierzęcych w celu uzyskania nawozu organicznego, który z jednej strony można wykorzystać do poprawy żyzności gleby i zwiększenia plonów, a z drugiej do produkcji biogazu jako procesu energooszczędnego, który ma z drugiej strony znaczny potencjał wytwarzania ekologicznie czystej i odnawialnej energii. Zaproponowane podejście do osiągnięcia efektywności energetycznej pozwala na zwiększenie plonów bez zwiększania kosztów nawozów.
 
REFERENCES (92)
1.
Abis et al. 2020 – Abis, L., Loubet, B., Ciuraru, R., Lafouge, F., Houot, S., Nowak, V., Tripied, T., Dequiedt, S., Maron, P.-A. and Sadet-Bourgeteau, S. 2020. Reduced microbial diversity induces larger volatile organic compound emissions from soils. Scientific Reports 10, pp. 1–15, DOI: 10.1038/s41598-020-63091-8.
 
2.
Alburquerque et al. 2012 – Alburquerque, J.A., de la Fuente, C., Campoy, M., Carrasco, L., Nájera, I., Baixauli, C., Caravaca, F., Roldán, A., Cegarra, J. and. Bernal, M.P. 2012. Agricultural use of digestate for horticultural crop production and improvement of soil properties. European Journal of Agronomy 43, pp. 119–128, DOI: 10.1016/j.eja.2012.06.001.
 
3.
Аrthurson, V. 2009. Closing the global energy and nutrient cycles through application of biogas residue to agricultural land – Potential benefits and drawbacks. Energies 2(2), pp. 226–242, DOI: 10.3390/en20200226.
 
4.
Asp et al. 2022 – Asp, H., Bergstrand, K.-J., Caspersen, S. and Hultberg, M. 2022. Anaerobic digestate as peat substitute and fertiliser in pot production of basil. Biological agriculture & horticulture 38(4), pp. 247–257, DOI: 10.1080/01448765.2022.2064232.
 
5.
Bachmann et al. 2011 – Bachmann, S., Wentzel, S. and Eichler-Lobermann, B. 2011. Codigested dairy slurry as a phosphorus and nitrogen source for Zea mays L. and Amaranthus cruentus L. Journal of Plant Nutrition and Soil Science 174(6), pp. 908–915, DOI: 10.1002/jpln.201000383.
 
6.
Barłóg et al. 2020 – Barłóg, P., Hlisnikovský, L. and Kunzová, E. 2020. Effect of digestate on soil organic carbon and plant-available nutrient content compared to cattle slurry and mineral fertilization. Agronomy 10(3), DOI: 10.3390/agronomy10030379.
 
7.
Bauer et al. 2021 – Bauer, L., Ranglová, K., Masojídek, J., Drosg, B. and Meixner, K. 2021. Digestate as sustainable nutrient source for microalgae-challenges and prospects. Applied Sciences 11(3), DOI: 10.3390/app11031056.
 
8.
Baumann et al. 2012 – Baumann, K., Dignac, M.F., Rumpel, C., Bardoux, G., Sarr, A., Stefens, M. and Maron, P.-A. 2012. Soil microbial diversity affects soil organic matter decomposition in a silty grassland soil. Biogeochemistry 114, pp. 1–12, DOI: 10.1007/s10533-012-9800-6.
 
9.
Bhatt, A.H. and Tao, L. 2020. Economic perspectives of biogas production via anaerobic digestion. Bioengineering 7(3), DOI: 10.3390/bioengineering7030074.
 
10.
Boiko et al. 2010 – Boiko, P.I., Kovalenko, N.P., Hanhur, V.V. and Koretskyi, O.Ye. 2010. Energy principles of efficient use of resources in agriculture. Bulletin of the Poltava State Agrarian Academy 3, pp. 14–18.
 
11.
Borowski et al. 2018 – Borowski, S., Boniecki, P., Kubacki, P. and Czyżowska, A. 2018. Food waste co-digestion with slaughterhouse waste and sewage sludge: digestate conditioning and supernatant quality. Waste Management 74, pp. 158–167, DOI: 10.1016/j.wasman.2017.12.010.
 
12.
Bougnom et al. 2012 – Bougnom, B.P., Niederkofer, C., Knapp B.A., Stimpf, E. and Insam, H. 2012. Residues from renewable energy production: their value for fertilizing pastures. Biomass Bioenergy 39, pp. 290–295, DOI: 10.1016/j.biombioe.2012.01.017.
 
13.
Brtnicky et al. 2022 – Brtnicky, M., Kintl, A., Holatko, J., Hammerschmiedt, T., Mustafa, A., Kucerik, J., Vitez, T., Prichystalova, J., Baltazar, T. and Elbl, J. 2022. Effect of digestates derived from the fermentation of maize-legume intercropped culture and maize monoculture application on soil properties and plant biomass production. Chemical and Biological Technologies in Agriculture 9(1), pp. 1–24, DOI: 10.1186/s40538-022-00310-6.
 
14.
Bubaker et al. 2012 – Bubaker, J., Risberg, K. and Pell, M. 2012. Biogas residues as fertilisers – effects on wheat growth and soil microbial activities. Applied Energy 99, pp. 126–134, DOI: 10.1016/j.apenergy.2012.04.050.
 
15.
Béghin-Tanneau et al. 2019 – Béghin-Tanneau, R., Guérin F., Guiresse. M., Kleiber. D. and Scheiner, J.D. 2019. Carbon sequestration in soil amended with anaerobic digested matter. Soil and Tillage Research 192, pp. 87–94, DOI: 10.1016/j.still.2019.04.024.
 
16.
Canadell, J.G. and Schulze, E.D. 2014. Global potential of biospheric carbon management for climate mitigation. Nature Communications 5, DOI: 10.1038/ncomms6282.
 
17.
Ceglie et al. 2015 – Ceglie, F.G., Bustamante, M.A., Amara, M.B., Tittarelli, F. and Singer, A.C. 2015. The challenge of peat substitution in organic seedling production: optimization of growing media formulation through mixture design and response surface analysis. Plos One 10(6), DOI: 10.1371/journal.pone.0128600.
 
18.
Doyeni et al. 2021 – Doyeni, M.O., Stulpinaite, U., Baksinskaite, A., Suproniene, S. and Tilvikiene, V. The Effectiveness of Digestate Use for Fertilization in an Agricultural Cropping System. Plants (Basel) 10(8), DOI: 10.3390/plants10081734.
 
19.
Doyeni et al. 2022 – Doyeni, M.O., Barcauskaite, K., Buneviciene, K., Venslauskas, K., Navickas, K., Rubezius, M., Baksinskaite, A., Suproniene, S. and Tilvikiene, V. 2022. Nitrogen flow in livestock waste system towards an efficient circular economy in agriculture. Waste Management & Research 41(3), pp. 701–712, DOI: 10.1177/0734242X221123484.
 
20.
Dragicevic et al. 2018 – Dragicevic, I., Sogn, T.A. and Eich-Greatorex, S. 2018. Recycling of Biogas Digestates in Crop Production – Soil and Plant Trace Metal Content and Variability. Frontiers in Sustainable Food Systems 2, DOI: 10.3389/fsufs.2018.00045.
 
21.
Dubrovin et al. 2004 – Dubrovin, V.O., Korchemnyi, M.O., Maslo, I.P. et al. 2004. Biofuel (technology, machines and equipment). Kyiv: CTI “Energy and Electrification”, 256.
 
22.
Energy evaluation of agroecosystems: training manual /O.F. Smahlii et al.; Ministry of Agrarian Policy of Ukraine, State Agroecological University. Zhytomyr: Volyn, 2004, 132.
 
23.
European Parliament 2009. Directive 2009/28/EC. Promotion of the use of energy from renewable sources and amending and subsequently repealing Directives. 2001/77/EC and 2003/30/EC. O. J. European Union 140(16). [Online] http://data.europa.eu/eli/dir/... [Accessed: 2023-10-05].
 
24.
Gontaruk et al. 2024 – Gontaruk, Y., Kolomiiets, T., Honcharuk, I. and Tokarchuk, D. 2024. Production and Use of Biogas and Biomethane from Waste for Climate Neutrality and Development of Green Economy. Journal of Ecological Engineering 25(2), pp. 20–32, DOI: 10.12911/22998993/175876.
 
25.
Guilayn et al. 2019 – Guilayn, F., Jimenez, J., Martel, J.L., Rouez, M., Crest, M. and Patureau, D. 2019. First fertilizing-value typology of digestates: a decision-making tool for regulation. Waste Management 86, pp. 67–79, DOI: 10. 1016/j.wasman.2019.01.032.
 
26.
Gutser et al. 2005 – Gutser, R., Ebertseder, T., Weber, A., Schraml, M. and Schmidhalter, U. 2005. Short-term and residual availability of nitrogen after long-term application of organic fertilizers on arable land. Plant Nutrition and Soil Science 168(4), pp. 439–446, DOI: 10.1002/jpln.200520510.
 
27.
Haberl et al. 2011 – Haberl, H., Erb, K-H., Krausmann, F., Bondeau, A., Lauk, C., Muller, C., Plutzar, C. and Steinberger, J.K. 2011. Global bioenergy potentials from agricultural land in 2050: sensitivity to climate change, diets and yields. Biomass and Bioenergy 35, pp. 4753–4769, DOI: 10.1016/j.biombioe.2011.04.035.
 
28.
Hammerschmiedt et al. 2022 – Hammerschmiedt, T., Kintl, A., Holatko, J., Mustafa, A., Vitez, T., Malicek, O., Baltazar, T., Elbl, J. and Brtnicky, M. 2022. Assessment of digestates prepared from maize, legumes, and their mixed culture as soil amendments: Effects on plant biomass and soil properties. Frontiers in Plant Science 13(13), DOI: 10.3389/fpls.2022.1017191.
 
29.
Häfner et al. 2021 – Häfner, F., Ruser, R., Claß-Mahler, I. and Möller, K. 2021. Field Application of Organic Fertilizers Triggers N2O Emissions From the Soil N Pool as Indicated by 15N-Labeled Digestates. Frontiers in Sustainable Food Systems 4, DOI: 10.3389/fsufs.2020.614349.
 
30.
Holm-Nielsen et al. 2009 – Holm-Nielsen, J.B., Al Seadi, T. and Oleskowicz-Popiel, P. 2009. The future of anaerobic digestion and biogas utilization. Bioresource Technology 100(22), pp. 5478–5484, DOI: 10.1016/j.biortech.2008.12.046.
 
31.
Honcharuk et al. 2023 – Honcharuk, I., Tokarchuk, D., Gontaruk, Y. and Hreshchuk, H. 2023. Bioenergy recycling of household solid waste as a direction for ensuring sustainable development of rural areas. Polityka Energetyczna – Energy Policy Journal 26(1), pp. 23–42, DOI: 10.33223/epj/161467.
 
32.
IEA 2018. Biogas production by region and by feedstock type, IEA, Paris. [Online] https://www.iea.org/data-and-s... ction-by-region-and-by-feedstock-type-2018 [Accessed: 2023-12-11].
 
33.
IEA 2019. IEA Bioenergy Task 37-Country report summaries 2019. IEA Bioenergy. [Online] https://www.ieabioenergy.com/w... [Accessed: 2023-12-11].
 
34.
Jamison et al. 2021 – Jamison, J., Khanal, S.K., Nguyen, N.H. and Deenik, J.L. 2021. Assessing the Effects of Digestates and Combinations of Digestates and Fertilizer on Yield and Nutrient Use of Brassica juncea (Kai Choy). Agronomy 11(3), DOI: 10.3390/agronomy11030509.
 
35.
Johansen et al. 2013a – Johansen, A., Carter, M.S., Jensen, E.S., Hauggard-Nielsen, H. and Ambus, P. 2013. Effects of digestate from anaerobically digested cattle slurry and plant materials on soil microbial community and emission of CO2 and N2O. Applied Soil Ecology 63, pp. 36–44, DOI: 10.1016/j.apsoil.2012.09.003.
 
36.
Johansen et al. 2013b – Johansen, A., Nielsen, H.B., Hansen, C.M., Adreasen, C., Carlsgart, J., Hauggard-Nielsen, H. and Roepstorff, A. 2013. Survival of weed seeds and animal parasites as affected by anaerobic digestion at meso- and thermophilic conditions. Waste Management 33, pp. 807–812, DOI: 10.1016/J.WASMAN.2012.11.001.
 
37.
Kaletnik et al. 2020 – Kaletnik, G., Honcharuk, I. and Okhota, Y. 2020. The Waste-free production development for the energy autonomy formation of ukrainian agricultural enterprises. Journal of Environmental Management and Tourism 11(3), pp. 513–522, DOI: 10.14505/jemt.v11.3(43).02.
 
38.
Kaletnik et al. 2021 – Kaletnik, H.M., Palamarchuk, V.D., Honcharuk, I.V., Yemchyk, T.V. and Telekalo, N.V. 2021. Prospects for the use of corn for energy-efficient and ecologically safe development of rural areas. Monograph. Vinnytsia, 260 p.
 
39.
Karimi et al. 2020 – Karimi, B., Cahurel, J.Y., Gontier, L., Charlier, L., Chovelon, M., Mahé, H. and Ranjard, L. 2020. A meta-analysis of the ecotoxicological impact of viticultural practices on soil biodiversity. Environ Chem Letters 18, pp. 1947–1966, DOI: 10.1007/s10311-020-01050-5.
 
40.
Karimi et al. 2022 – Karimi, B., Sadet‑Bourgeteau, S., Cannavacciuolo, M., Chauvin, C., Flamin, C., Haumont, A., Jean‑Baptiste, V., Reibel, A., Vrignaud, G. and Ranjard, L. 2022. Impact of biogas digestates on soil microbiota in agriculture: a review. Environmental Chemistry Letters 20, pp. 3265–3288, DOI: 10.1007/s10311-022-01451-8.
 
41.
Kathijotes et al. 2015 – Kathijotes, N., Petrova, V., Zlatareva, E., Kolchakov, V., Marinova, S. and Ivanov, P. 2015. Impacts of Biogas Digestate on Crop Production and the Environment: A Bulgarian Case Study. American Journal of Environmental Sciences 11(2), pp. 81–89, DOI: 10.3844/ajessp.2015.81.89.
 
42.
Koszel, M. and Lorencowicz, E. 2015. Agricultural use of biogas digestate as a replacement fertilizers. Agriculture and Agricultural Science Procedia 7, pp. 119–124, DOI: 10.1016/j.aaspro.2015.12.004.
 
43.
Kovalchuk, M.I. 2002. Economic analysis in agriculture: a textbook for independent study of the discipline. Kyiv: KNEU. 282.
 
44.
Kovačević et al. 2022 – Kovačević, D., Manojlović, M., Čabilovski, R., Ilić, Z. S., Petković, K., Štrbac, M. and Vijuk, M. 2022. Digestate and Manure Use in Kohlrabi Production: Impact on Plant-Available Nutrients and Heavy Metals in Soil, Yield, and Mineral Composition. Agronomy 2022, 12(4), DOI: 10.3390/agronomy12040871.
 
45.
Kupper et al. 2014 – Kupper, T., Bürge, D., Bachmann, H.J., Gusewell, S. and Mayer, J. 2014. Heavy metals in source-separated compost and digestates. Waste Management 34, pp. 867–874, DOI: 10.1016/j.wasman.2014.02.007.
 
46.
Le Guillou et al. 2012 – Le Guillou, C., Angers, D.A., Maron, P.A., Leterme, P. and Menasseri-Aubry, S. 2012. Linking microbial community to soil water-stable aggregation during crop residue decomposition. Soil Biology and Biochemistry 50, pp. 126–133, DOI: 10.1016/j.soilbio.2012.03.009.
 
47.
Li et al. 2022 – Li, G., Hu, R., Wang, N., Yang, T, Xu, F., Li, J., Wu, J., Huang, Z., Pan, M. and Lyu, T. 2022. Cultivation of microalgae in adjusted wastewater to enhance biofuel production and reduce environmental impact: Pyrolysis performances and life cycle assessment. Journal of Cleaner Production 355, DOI: 10.1016/j.jclepro.2022.131768.
 
48.
Lohosha et al. 2018 – Lohosha, R.V., Pidvalna, O.H. and Krychkovskyi, V.Yu. 2018. Methodology and practices of evaluating the processes of the use and reproduction of soil fertility in vegetable growing. Business Inform Scientific Journal 10, pp. 177–187.
 
49.
Lohosha et al. 2019 – Lohosha, R., Moroz, I., Semenyshena, N. and Chykurkova, A. 2019. Market Institute: Research methodology in context of basic cognitive approaches. Intellectual Economics 13(2), pp. 172–194, DOI: 10.13165//IE-19-13-2-09.
 
50.
Lohosha et al. 2020 – Lohosha, R., Mykhalchyshyna, L., Prylutskyi, A. and Kubai, O. 2020. Institutionalization of the agrarian market in Ukraine and European economic community: genesis, evaluation and analysis. Independent Journal of Management & Production 11(8), pp. 727–750, DOI: 10.14807/ijmp.v11i8.1232.
 
51.
Lohosha et al. 2022 – Lohosha, R.V., Palamarchuk, V.D. and Krychkovskyi, V.Yu. 2022. Economic and bioenergy efficiency of using digestate of biogas plants when growing agricultural and vegetable crops in the conditions of the European integration of Ukraine (Ekonomichna ta bioenerhetychna efektyvnistʹ vykorystannya dyhestatu biohazovykh stantsiy pry vyroshchuvanni silʹsʹkohospodarsʹkykh ta ovochevykh kulʹtur v umovakh yevrointehratsiyi Ukrayiny). Business Inform. 9, pp. 40–52, DOI: 10.32983/2222-4459-2022-9-40-52 (in Ukrainian).
 
52.
Lohosha et al. 2023a – Lohosha, R.V., Palamarchuk, V.D. and Krychkovskyi, V.Yu. 2023. Economic efficiency of using digestate from biogas plants in Ukraine when growing agricultural crops as a way of achieving the goals of the European Green Deal. Polityka Energetyczna – Energy Policy Journal 26(2), pp. 161–182, DOI: 10.33223/epj/163434.
 
53.
Lohosha et al. 2023b – Lohosha, R.V., Prylutskyi, A.M., Pronko, L.M. and Kolesnyk, T.V. 2023. Organization of the System of Internal Marketing and Marketing of Interaction of Agricultural Enterprises for the Production of Biodiesel Based on Value Chain Analysis. Journal of Environmental Management and Tourism XIV, 3(67), pp. 823–841, DOI: 10.14505/jemt.v14.3(67).21.
 
54.
Manojlović et al. 2021 – Manojlović ,M., Kovačević, D., Čabilovski, R., Petković, K. and Štrbac, M. 2021. Organic fertilizers as a source of microelements and potentially toxic elements. [In:] Proceedings of the 6th International Scientific Meeting, the International Soil Science Symposium on Soil Science & Plant Nutrition, Samsun, Turkey, 18–19 December, pp. 127–133.
 
55.
Maron et al. 2018 – Maron, P.-A., Sarr, A., Kaisermann, A., Lévêque, J., Mathieu, O., Guigue, J., Karimi, B., Bernard, L., Dequiedt, S., Terrat, S., Chabbi, A. and Ranjard, L. 2018. High microbial diversity promotes soil ecosystem functioning. Applied and Environmental Microbiology 84(9), pp. e02738–e2817, DOI: 10.1128/AEM.02738-17.
 
56.
Masse et al. 2011 – Masse, D.I., Talbot, G. and Gilbert, Y. 2011. On farm biogas production: a method to reduce GHG emissions and develop more sustainable livestock operations. Animal Feed Science and Technology 166–167, pp. 436–445, DOI: 10.1016/j.anifeedsci.2011.04.075.
 
57.
Meyer et al. 2018 – Meyer, A.K.P., Ehimen, E.A. and Holm-Nielsen, J.B. 2018. Future European biogas: animal manure, straw and grass potentials for a sustainable European biogas production. Biomass and Bioenergy 111, pp. 154–164, DOI: 10.1016/J.BIOMBIOE.2017.05.013.
 
58.
Mola-Yudego et al. 2017 – Mola-Yudego, B., Arevalo, J., Díaz-Yáñez, O., Dimitriou, I., Haapala, A., Filho, A.C.F., Selkimäki, M. and Valbuena, R. 2017. Wood biomass potentials for energy in northern Europe: Forest or plantations? Biomass and Bioenergy 106, pp. 95–103, DOI: 10.1016/j.biombioe.2017.08.021.
 
59.
Möller, K. and Müller, T. 2012. Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Engineering in Life Sciences 12, pp. 242–257, DOI: 10.1002/elsc.201100085.
 
60.
Nabel et al. 2017 – Nabel, M.D., Schrey, S., Poorter, H., Koller, R. and Jablonowski, N. 2017. Effects of digestate fertilization on Sida hermaphrodita: Boosting biomass yields on marginal soils by increasing soil fertility. Biomass and Bioenergy 107, pp. 207–213, DOI: 10.1016/j.biombioe.2017.10.009.
 
61.
Ni et al. 2017 – Ni, P., Lyu, T., Sun, H., Dong, R.J. and Wu, S.B. 2017. Liquid digestate recycled utilization in anaerobic digestion of pig manure: effect on methane production, system stability and heavy metal mobilization. Energy 141, pp. 1695–1704, DOI: 10.1016/j.energy.2y.2017.11.107.
 
62.
Nkoa, R. 2014. Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: a review. Agronomy for Sustainable Development 34, pp. 473–492, DOI: 10.1007/s13593-013-0196-z .
 
63.
Odlare et al. 2008 – Odlare, M., Pell, M. and Svensson, K. 2008. Changes in soil chemical and microbiological properties during 4 years of application of various organic residues. Waste Management 28(7), pp. 1246–1253, DOI: 10.1016/j.wasman.2007.06.005.
 
64.
Palamarchuk, V.D. and Kolisnyk, O.M. 2022. Modern technology of corn cultivation for energy-efficient and ecologically safe development of rural areas. Monograph. Vinnytsia: “Druk” LLC. 372.
 
65.
Palamarchuk, V.D. and Kovalenko, O.A. 2019. Bioenergy evaluation of the corn hybrid cultivation technology depending on the factors of influence. Taurian Scientific Bulletin. Agriculture, Plant, Vegetable and Melon Growing 107, pp. 137–144.
 
66.
Palamarchuk, V.D. and Krychkovskyi, V.Yu. 2019. Characteristics of microbiological and agrochemical composition of organic fertilizer Efluent. Agriculture and Forestry 4(15), pp. 45–55, DOI: 10.37128/2707-5826-2019-4-4.
 
67.
Palamarchuk, V.D. and Krychkovskyi, V.Yu. 2020a. Efficiency of using digestate when growing carrot and red beet. Feeds and Feed Production 90, pp. 68–82, DOI: 10.31073/kormovyrobnytstvo202090-06.
 
68.
Palamarchuk, V.D. and Krychkovskyi, V.Yu. 2020b. Prospects for the use of digestate to increase the efficiency of biogas complexes. Proceedings of IV International Scientific and Practical Conference “Bioenergy Systems”. May 29. Zhytomyr, pp. 124–128.
 
69.
Palamarchuk et al. 2020 – Palamarchuk, V.D., Kovalenko, O.A. and Krychkovskyi, V.Yu. 2020. Increasing the efficiency of biogas complexes due to the use of digestate when growing agricultural and vegetable crops. International thematic scientific collection “Irrigation Agriculture” 73, pp. 95–101, DOI: 10.32848/0135-2369.2020.73.18.
 
70.
Prudent et al. 2020 – Prudent, M., Dequiedt, S., Sorin, C., Girodet, S., Nowak, V., Duc, G., Salon, C. and Maron, P.-A. 2020. The diversity of soil microbial communities matters when legumes face drought. Plant, Cell & Environment 43, pp. 1023–1035, DOI: 10.1111/pce.13712.
 
71.
Pryshliak et al. 2022 – Pryshliak, N., Bondarenko, V., Sokoliuk, S. and Brovarets, O. 2022. The formation of a bioenergy cluster for the production of biofuels from agricultural crops and waste: the experience of Ukraine. Polityka Energetyczna – Energy Policy Journal 25(4), pp. 149–164, DOI: 10.33223/epj/156210.
 
72.
Przygocka-Cyna, K. and Grzebisz, W. 2018. Biogas digestat – Benefits and risks for soil fertility and crop quality – An evaluation of grain maize response. Open Chemistry 16, pp. 258–271, DOI: 10.1515/chem-2018-0027.
 
73.
Rawoof et al. 2021 – Rawoof, S.AA., Kumar, P.S., Vo, D.V.N. and Subramanian, S. 2021. Sequential production of hydrogen and methane by anaerobic digestion of organic wastes: a review. Environmental Chemistry Letters 19, pp. 1043–1063, DOI: 10.1007/s10311-020-01122-6.
 
74.
Reuland et al. 2021 – Reuland, G., Sigurnjak, I., Dekker, H., Michels, E. and Meers, E. 2021. The Potential of Digestate and the Liquid Fraction of Digestate as Chemical Fertiliser Substitutes under the RENURE Criteria. Agronomy 11(7), DOI: 10.3390/agronomy11071374.
 
75.
Riva et al. 2016 – Riva, C., Orzi, V., Carozzi, M., Acutis, M., Boccasile, G., Lonati, S., Tambone, F., D’Imporzano, G. and Adani, F. 2016. Short-term experiments in using digestate products as substitutes for mineral (n) fertilizer: Agronomic performance, odours, and ammonia emission impacts. Science of The Total Environment 547, pp. 206–214, DOI: 10.1016/j.scitotenv.2015.12.156.
 
76.
Shakoor et al. 2020 – Shakoor, A., Ashraf, F., Shakoor, S., Mustafa, A., Rehman, A. and Altaf, M.M. 2020. Biogeochemical transformation of greenhouse gas emissions from terrestrial to atmospheric environment and potential feedback to climate forcing. Environmental Science and Pollution Research 27(31), pp. 38513–38536, DOI: 10.1007/s11356-020-10151-1.
 
77.
Simeonov et al. 2012 – Simeonov, I., Mihaylova, S., Kalchev, B., Chorukova, E. and Marinova, S. 2012. Study on the anaerobic co-digestion of waster fruits and vegetables. Proceedings of the BALWOIS 5th International Conference on Water, Climate and Environment, May 28–Jun. 2, Ohrid, FYROM.
 
78.
Slepetiene et al. 2020 – Slepetiene, A., Volungevicius, J., Jurgutis, L., Liaudanskiene I., Amaleviciute-Volunge, K., Slepetys, J. and Ceseviciene, J. 2020. The potential of digestate as a biofertilizer in eroded soils of Lithuania. Waste Management 102, pp. 441–451, DOI: 10.1016/j.wasman.2019.11.008.
 
79.
Stoknes et al. 2018 – Stoknes, K., Wojciechowska, E., Jasińska, A., Gulliksen, A. and Tesfamichael, A.A. 2018. Growing vegetables in the circular economy; cultivation of tomatoes on green waste compost and food waste digestate. ISHS Acta Horticulturae 1215: International Symposium on Greener Cities for More Efficient Ecosystem Services in a Climate Changing World, pp. 389–396, DOI: 10.17660/ActaHortic.2018.1215.71.
 
80.
Šimon et al. 2015 – Šimon, T., Kunzová, E. and Friedlová, M. 2015. The effect of digestate, cattle slurry and mineral fertilization on the winter wheat yield and soil quality parameters. Plant, Soil and Environment 61(11), pp. 522–527, DOI: 10.17221/530/2015-PSE.
 
81.
Thangarajan et al. 2013 – Thangarajan, R., Bolan, N.S., Tian, G., Naidu, R. and Kunhikrishnan, A. 2013. Role of organic amendment application on greenhouse gas emission from soil. Science of The Total Environment 465, pp. 72–96, DOI: 10.1016/j.scitotenv.2013.01.031.
 
82.
Tilvikiene et al. 2020 – Tilvikiene, V., Venslauskas, K., Povilaitis, V., Navickas, K., Zuperka, V. and Kadziuliene, Z. 2020. The effect of digestate and mineral fertilisation of cocksfoot grass on greenhouse gas emissions in a cocksfoot-based biogas production system. Energy, Sustainability and Society 10, DOI: 10.1186/s13705-020-00245-6.
 
83.
Törnwall et al. 2017 – Törnwall, E., Pettersson, H., Thorin, E. and Schwede, S. 2017. Post-treatment of biogas digestate – An evaluation of ammonium recovery, energy use and sanitation. Energy Procedia 142, pp. 957–963, DOI: 10.1016/j.egypro.2017.12.153.
 
84.
Urra et al. 2019 – Urra, J., Alkorta, I. and Garbisu, C. 2019. Potential benefts and risks for soil health derived from the use of organic amendments in agriculture. Agronomy 9, pp. 1–23, DOI: 10.3390/agronomy9090542.
 
85.
Vasiuta, V.V. 2016. Bioenergy efficiency of red beet cultivation under drip irrigation in the Southern region of Ukraine. Taurian Scientific Bulletin. Agricultural Sciences 96, pp. 17–21.
 
86.
Verdi et al. 2019 – Verdi, L., Kuikman, P.J., Orlandini, S., Mancini, M., Napoli, M. and Dalla Marta, A. 2019. Does the use of digestate to replace mineral fertilizers have less emissions of N2O and NH3. Agricultural and Forest Meteorology 269–270, pp. 112–118, DOI: 10.1016/j.agrformet.2019.02.004.
 
87.
Vivant et al. 2013 – Vivant, A.L., Garmyn, D., Maron, P.A., Nowak, V. and Piveteau, P. 2013. Microbial diversity and structure are drivers of the biological barrier effect against Listeria monocytogenes in soil. PLOS ONE 8, pp. 1–11, DOI: 10.1371/journal.pone.0076991.
 
88.
Walsh et al. 2012 – Walsh, J.J., Jones, D.L., Edwards-Jones, G. and Williams, A.P. 2012. Replacing inorganic fertilizer with anaerobic digestate may maintain agricultural productivity at less environmental cost. Journal of Plant Nutrition and Soil Science 175, pp. 840–845, DOI: 10.1002/jpln.201200214.
 
89.
Zaharinov, B. 2013. Biomass, biogas, compost energy of anthropogenic ecosystems. Environmental biotechnology for the production of biogas and compost utilization. Sofia: NBU.
 
90.
Zhan et al. 2020 – Zhan, Y.H., Yin, F.B., Yue, C.D., Zhu. J., Zhu, Z.P., Zou, M.Y. and Dong, H. 2020. Effect of pretreatment on hydraulic performance of the integrated membrane process for concentrating nutrient in biogas digestate from swine manure. Membranes 10(10), DOI: 10.3390/membranes10100249.
 
91.
Zhuchenko, A.A. 1980. Mathematical modeling in optimization of breeding and genetic research. Kyshynev: Shtyntsa. 104.
 
92.
Zirkler et al. 2014 – Zirkler, D., Peters, A. and Kaupenjohann, M. 2014. Elemental composition of biogas residues: variability and alteration during anaerobic digestion. Biomass and Bioenergy 67, pp. 89–98, DOI: 10.1016/j.biombioe.2014.04.021.
 
eISSN:2720-569X
ISSN:1429-6675
Journals System - logo
Scroll to top