ORIGINAL PAPER
Estimation of the total influence of methods for increasing the line natural load
More details
Hide details
1
Department of Electrical Engineering, Lutsk National Technical University, Lutsk, Ukraine
Submission date: 2023-08-29
Final revision date: 2023-10-04
Acceptance date: 2023-11-14
Publication date: 2024-03-27
Polityka Energetyczna – Energy Policy Journal 2024;27(1):27-48
KEYWORDS
TOPICS
ABSTRACT
Studies aimed at the economically sound increase in the capacity of existing power lines and improvements in their design are relevant today. In addition to the well-known design methods of influencing the capacity of the transmission line, there are other meanings that can affect its natural capacity, which is directly related to the capacity. Therefore, the purpose of this study was to find possible methods of increasing natural power and evaluate their effectiveness in real configurations. The basis of the methodological approach applied in this study is a qualitative combination of methods of systematic analysis of ways to increase the capacity of power lines with the analytical investigation of the prospects for its impact on wave resistance to increase the natural power of the line. The conducted research determined the total influence of the analyzed factors on the increase in transmission capacity and identified the most optimal configuration from a technical and economic standpoint. Based on the results of the calculation of the natural capacity of the configurations, conclusions were made about the significance of the impact of each of the above factors, and the economic effect of their implementation in the integrated power system was established. Improvement of this methodology can, in the long run, serve as a tool for calculating configurations for economic and technical relevance, or serve as a foundation for further identification of factors affecting the transmission capacity of power lines.
METADATA IN OTHER LANGUAGES:
Polish
Oszacowanie całkowitego wpływu metod zwiększania obciążenia naturalnego linii
pole elektryczne linii elektroenergetycznych, model matematyczny, energetyka i elektrotechnika, badania analityczne, zdolność przesyłowa
Badania mające na celu ekonomicznie uzasadnione zwiększenie przepustowości istniejących linii elektroenergetycznych i ulepszenia w ich projektowaniu są obecnie aktualne. Oprócz dobrze znanych metod projektowania wpływających na przepustowość linii przesyłowej, istnieją inne znaczenia, które mogą wpływać na jej moc naturalną, która jest bezpośrednio związana z przepustowością. Dlatego celem niniejszego badania było znalezienie możliwych metod zwiększenia mocy naturalnej i ocena ich skuteczności w rzeczywistych konfiguracjach. Analizowane czynniki obejmują: zastosowanie przewodów o ulepszonych parametrach, wpływ liczby komponentów w fazie, odstęp fazowy, obecność warstwy izolacyjnej na przewodach. Podstawą podejścia metodologicznego w tym badaniu jest jakościowe połączenie metod systematycznej analizy sposobów zwiększenia przepustowości linii elektroenergetycznych z analitycznym badaniem perspektyw ich wpływu na opór falowy w celu zwiększenia mocy naturalnej linii. Przeprowadzone badania pozwoliły określić łączny wpływ analizowanych czynników na zwiększenie zdolności przesyłowych oraz wyznaczyć najbardziej optymalną konfigurację z technicznego i ekonomicznego punktu widzenia. Na podstawie wyników obliczeń mocy naturalnej konfiguracji, sformułowano wnioski dotyczące istotności wpływu każdego z powyższych czynników oraz określono efekt ekonomiczny ich implementacji w zintegrowanym systemie elektroenergetycznym. Udoskonalenie tej metodyki, w dalszej perspektywie, może posłużyć jako narzędzie do obliczania konfiguracji pod kątem przydatności ekonomicznej i technicznej lub stanowić podstawę do dalszej identyfikacji czynników wpływających na zdolności przesyłowe linii elektroenergetycznych.
REFERENCES (34)
1.
Bence et al. 2022 – Bence, N., Lengyel, A. and Tarics, Z. 2022. A simple model for describing the minimum differential cross-section of elastic proton scattering on protons at high energies. Scientific Herald of Uzhhorod University. Series “Physics” 51, pp. 30–38, DOI: 10.54919/2415-8038.2022.51.30-38.
2.
Bezprozvannych, A.V. and Naboka, B.G. 2012. Mathematical models and methods for calculating electrical insulating structures. Kharkiv: National Technical University “Kharkiv Polytechnic Institute”.
3.
Bondarenko et al. 2012 – Bondarenko, I.N., Galich, A.V., Slipchenko, N.I. and Troitski, S.I. 2012. Cone-shaped resonator the high-order mode oscillation transducers. CriMiCo 2012–2012 22nd International Crimean Conference Microwave and Telecommunication Technology, Conference Proceedings 1, pp. 565–567.
4.
Bondarenko, I.N. and Galich, A.V. 2014. Microstrip resonant sensors. [In:] CriMiCo 2014–2014 24th International Crimean Conference Microwave and Telecommunication Technology, Conference Proceedings, pp. 984–985, DOI: 10.1109/CRMICO.2014.6959725.
5.
Bondarenko, I.N. and Lavrinovich, A.A. 2007. Investigation of the thin-film high-temperature superconductivity coplanar line. Telecommunications and Radio Engineering (English translation of Elektrosvyaz and Radiotekhnika) 66(7), pp. 597–605.
6.
Carslaw, H.S. and Jaeger, J.C. 1986. Conduction of heat in solids. Oxford: Oxford University Press.
7.
Deepak Selvakumar et al. 2023 – Deepak Selvakumar, R., Wu, J., Ding, Y. and Alkaabi, A.K. 2023. Melting behavior of an organic phase change material in a square thermal energy storage capsule with an array of wire electrodes. Applied Thermal Engineering 228, DOI: 10.1016/j.applthermaleng.2023.120492.
8.
Fernandez et al. 2016 – Fernandez, E., Albizu, I., Mazon, A.J., Etxegarai, A., Buigues, G. and Alberdi, R. 2016. Power line monitoring for the analysis of overhead line rating forecasting methods. [In:] 2016 IEEE PES PowerAfrica, pp. 119–123, DOI: 10.1109/PowerAfrica.2016.7556583.
9.
Fortescue, C.L. 1918. Method of symmetrical co-ordinates applied to the solution of polyphase networks. New York: The American Institute of Electrical Engineers.
10.
Gritsyuk et al. 2022 – Gritsyuk, V., Nevliudov, I., Zablodskiy, M. and Subramanian, P. 2022. Estimation of eddy currents and power losses in the rotor of a screw electrothermomechanical converter for additive manufacturing. Machinery & Energetics 13(2), pp. 41–49, DOI: 10.31548/machenergy.13(2).2022.41-49.
11.
Hasan, S. and Agarwal, V. 2023. A voltage support scheme for distributed generation with minimal phase current under asymmetrical grid faults. IEEE Transactions on Industrial Electronics 70(10), pp. 10261–10270.
13.
Hingorani, N.G. and Gyugyi, L. 1999. Understanding FACTS: Concepts and technology of flexible AC transmission systems. Hoboken: Wilеy-IEEE Press.
14.
Horowitz et al. 2020 – Horowitz, K.A.W., Jain, A., Ding, F., Mather, B. and Palmintier, B. 2020. A techno-economic comparison of traditional upgrades, volt-var controls, and coordinated distributed energy resource management systems for integration of distributed photovoltaic resources. International Journal of Electrical Power & Energy Systems 123, DOI: 10.1016/j.ijepes.2020.106222.
15.
Hrechko et al. 2023 – Hrechko, Y., Sereda, I., Babenko, I. and Azarenkov, M. 2023. Thermionic coating method with preliminary bombardment of the substrate surface with a stream of low energy ions. Scientific Herald of Uzhhorod University. Series “Physics” 53, pp. 9–8, DOI: 10.54919/physics/53.2023.09.
16.
Hunter, M.S. and Fowle, P. 1956. Natural and thermally formed oxide films on aluminium. Journal of the Electrochemical Society 103(9), DOI: 10.1149/1.2430389.
17.
Kaplun et al. 2022 – Kaplun, V., Osypenko, V. and Makarevych, S. 2022. Forecasting the electricity pricing of energy islands with renewable sources. Machinery & Energetics 13(4), pp. 38–47, DOI: 10.31548/machenergy.13(4).2022.38-47.
18.
Korzhyk et al. 2017 – Korzhyk, V.N., Kulak, L.D., Shevchenko, V.E., Kvasnitskiy, V.V., Kuzmenko, N.N., Liu, X., Cai, Y.X., Wang, L., Xie, H.W. and Zou, L.M. 2017. New equipment for production of super hard spherical tungsten carbide and other high-melting compounds using the method of plasma atomization of rotating billet. Materials Science Forum 898 MSF, pp. 1485–1497, DOI: 10.4028/www.scientific.net/MSF.898.1485.
19.
Law No. 605 “On the approval of the Energy strategy of Ukraine for the period until 2035 «Safety, energy efficiency, competitiveness»”. 2017. [Online]
https://zakon.rada.gov.ua/laws... [Accessed: 2023-08-18].
20.
Leenders, J.P.A. 2007. Upgrading overhead lines with high temperature, low sag conductors. Eindhoven: Eindhoven University of Technology. 59 pp.
22.
Rubino, L. and Rubino, G. 2016. Electrical Power Center with energy management capability for aeronautical applications. [In:] 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, SPEEDAM 2016, pp. 940–945, DOI: 10.1109/SPEEDAM.2016.7525944.
23.
Sadovoy et al. 2021 – Sadovoy, O., Avdieieva, E., Vakhonina, L. and Shebanin, V. 2021. Comparison of the Active Parts of Single-Phase Transformers with Twisted and Laminated Magnetic Circuits. [In:] Proceedings of the 20th IEEE International Conference on Modern Electrical and Energy Systems, MEES 2021, DOI: 10.1109/MEES52427.2021.9598597.
24.
Sarmiento, J.S.A. and Tavares, M.C. 2016. Enhancement the overhead transmission lines’ capacity by modifying the bundle geometry using heuristics algorithms. [In:] 2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), pp. 646–650, DOI: 10.1109/APPEEC.2016.7779583.
25.
Sarmiento, J.S.A. and Tavares, M.C. 2018. Methodology for optimizing the capacity and costs of overhead transmission lines by modifying their bundle geometry. Electric Power Systems Research 163(Part В), pp. 668–677, DOI: 10.1016/j.epsr.2017.10.005.
26.
Selvakumar et al. 2023 – Selvakumar, R.D., Wu, J., Afgan, I., Ding, Y. and Alkaabi, A.K. 2023. Melting performance enhancement in a thermal energy storage unit using active vortex generation by electric field. Journal of Energy Storage 67, DOI: 10.1016/j.est.2023.107593.
27.
Song et al. 2019 – Song, F., Wang, Y., Zhao, L., Qin, K., Liang, L, Yin, Z. and Tao, W. 2019. Study on thermal load capacity of transmission line based on IEEE Standard. Journal of Information Processing Systems 15(3), pp. 464–477, DOI: 10.3745/JIPS.04.0114.
28.
Song, T. and Teh, J. 2023. Dynamic thermal line rating model of conductor based on prediction of meteorological parameters. Electric Power Systems Research 224, DOI: 10.1016/j.epsr.2023.109726.
29.
Wang et al. 2019 – Wang, R., Tian, J., Wu, F., Zhang, Z. and Liu, H. 2019. PSO/GA combined with charge simulation method for the electric field under transmission lines in 3D calculation model. Electronics 8(10), DOI: 10.3390/electronics8101140.
30.
Waswa et al. 2021 – Waswa, L., Chihota, M.J. and Bekker, B. 2021. A probabilistic conductor size selection framework for active distribution networks. Energies 14(19), DOI: 10.3390/en14196387.
31.
Wu et al. 2020 – Wu, W., Liu, J., Liu, M., Rao, Z., Deng, H., Wang, Q., Qi, X. and Wang, S. 2020. An innovative battery thermal management with thermally induced flexible phase change material. Energy Conversion and Management 221, DOI: 10.1016/j.enconman.2020.113145.
32.
Xiao et al. 2023 – Xiao, F., Cao, K., Tang, J., Liu, D., Rao, Y. and Xiong, P. 2023. Study on coordinated multi-objective reactive control system of AC/DC power grid based on new-generation synchronous condenser. Energy Reports 9, pp. 2140–2148, DOI: 10.1016/j.egyr.2022.12.084.
33.
Yang, B. 2011. Study on heat capacity of power grid transmission components. Jinan: Shandong University.
34.
Zhang et al. 2023 – Zhang, Y., Zhao, X., Wang, X., Li, A. and Wu, X. 2023. Multi-objective optimization design of a grid-connected hybrid hydro-photovoltaic system considering power transmission capacity. Energy 284, DOI: 10.1016/j.energy.2023.128683.