ORIGINAL PAPER
An analysis of the economic and technological potential of solar-driven generation in renewable energy development
More details
Hide details
1
Izmail State University of Humanities, Izmail, Ukraine
2
National University of Water and Environmental Engineering, Ukraine
3
Odessa State Academy of Civil Engineering and Architecture, Odesa, Ukraine
4
Odessa National Maritime University, Odesa, Ukraine
5
Ternopil Ivan Puluj National Technical University, Ternopil, Ukraine
6
Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Poland
Submission date: 2024-01-19
Final revision date: 2024-02-12
Acceptance date: 2024-02-16
Publication date: 2024-03-28
Corresponding author
Michał Kopacz
Instytut Gospodarki Surowcami Mineralnymi i Energią PAN, Poland
Polityka Energetyczna – Energy Policy Journal 2024;27(1):157-172
KEYWORDS
TOPICS
ABSTRACT
The development of solar generation is an integral part of evaluating renewable “green” energy in accordance with the concept of sustainable development. This study focuses on the specifics of the implementation of solar energy in the context of the USA, the EU and China, taken as an object in connection with the specifics of the geographical-territorial and climatic-natural situation. The originality of the research lies in the approach of modelling the implementation of solar power generation with consideration to the main economic, technological, and resource factors. This study aims to assess trends in the development and implementation of regional solar power generation. Solar energy development is performed exclusively at the expense of private investment and state support is minimal. Therefore, the power of installed solar power plants relative to the amount of invested investments shows a high correlation. From the perspective of economic activity, solar energy in the analyzed regions is used by households in small amounts. The highest use of solar energy by households is in the USA, where this indicator is 8.3%, and the lowest is in China (0.13%). The analysis indicates that currently, solar energy is not a priority for developing the energy sector but is only a supplement. Further solar energy development is possible owing to technological innovations that will increase the efficiency of solar radiation use. The analysis also revealed the conclusion that the most powerful use of solar energy appears in China, with a figure of 19.6%, while the US has only 4.04% and the EU has almost 9%. According to the criterion of economic and technological influence on solar energy development, China occupies a leading position (9.89%), whereas the EU has only 0.03%. Thus, solar energy is currently not an attractive area for business and needs to prioritize the development of the EU economy, which is confirmed by insignificant investment flows compared to China and the USA.
METADATA IN OTHER LANGUAGES:
Polish
Analiza globalnego potencjału gospodarczego i technologicznego generacji fotowoltaicznej w rozwoju energetyki odnawialnej
energia słoneczna, zrównoważony rozwój, model ekonomiczno-technologiczny wytwarzania energii słonecznej, promieniowanie słoneczne, instalacja fotowoltaiczna
Rozwój energetyki słonecznej jest integralną częścią oceny odnawialnej „zielonej” energii w rozumieniu koncepcji zrównoważonego rozwoju. W opracowaniu skupiono się na specyfice wdrażania energetyki słonecznej na przykładzie USA, UE i Chin, ujętej przedmiotowo w powiązaniu ze specyfiką sytuacji geograficzno-terytorialnej i klimatyczno-przyrodniczej. Oryginalność badań polega na podejściu do modelowania realizacji energetyki słonecznej z uwzględnieniem głównych czynników ekonomicznych, technologicznych i zasobowych. Celem niniejszego opracowania jest ocena trendów w rozwoju i wdrażaniu regionalnej energetyki słonecznej, której rozwój odbywa się wyłącznie kosztem inwestycji prywatnych, a wsparcie państwa jest minimalne. Zatem moc zainstalowanych elektrowni słonecznych w stosunku do wielkości inwestycji wykazuje wysoką korelację. Z punktu widzenia działalności gospodarczej energia słoneczna w analizowanych regionach jest wykorzystywana przez gospodarstwa domowe w niewielkich ilościach. Największe wykorzystanie energii słonecznej przez gospodarstwa domowe występuje w USA, gdzie wskaźnik ten wynosi 8,3%, a najniższe w Chinach (0,13%). Z analizy wynika, że w chwili obecnej energetyka słoneczna nie jest priorytetem w rozwoju energetyki, a jedynie uzupełnieniem. Dalszy rozwój energetyki słonecznej możliwy jest dzięki innowacjom technologicznym, które zwiększą efektywność wykorzystania promieniowania słonecznego. W publikacji wykazano, że największe wykorzystanie energii słonecznej występuje w Chinach (19,6%), podczas gdy w USA tylko 4,04%, a w UE prawie 9%. Według kryterium wpływu ekonomiczno-technologicznego na rozwój energetyki słonecznej, Chiny zajmują czołową pozycję (9,89%), podczas gdy UE ma zaledwie 0,03%. Tym samym energetyka słoneczna nie jest obecnie atrakcyjnym obszarem dla biznesu i wymaga priorytetowego traktowania w gospodarce UE, co potwierdzają niewielkie napływy inwestycji w porównaniu do Chin i USA.
REFERENCES (58)
1.
Abid et. al. 2023 – Abid, K.M., Kumar, M.V., Raj, V.A. and Dhas, M.D.K. 2023. Environmental Impacts of the Solar Photovoltaic Systems in the Context of Globalization. Ecological Engineering & Environmental Technology 24(2), pp. 231–240, DOI: 10.12912/27197050/157168.
2.
Agbo et. al. 2021 – Agbo, E.P., Edet, C.O., Magu, T.O., Njok, A.O., Ekpo, C.M. and Louis, H. 2021. Solar energy: A panacea for the electricity generation crisis in Nigeria. Heliyon 7(5), DOI: 10.1016/j.heliyon.2021.e07016.
3.
Agrawal et al. 2023 – Agrawal, R., De Tommasi, L., Lyons, P., Zanoni, S., Papagiannis, G.K., Karakosta, C., Papapostolou, A., Durand, A., Martinez, L., Fragidis, G., Corbella, M., Sileni, L., Neusel, L., Repetto, M., Mariuzzo, I., Kakardakos, T. and Güemes, E.L. 2023. Challenges and opportunities for improving energy efficiency in SMEs: learnings from seven European projects. Energy Efficiency 16(17), DOI: 10.1007/s12053-023-10090-z.
4.
Androniceanu, A. and Sabie, O.M. 2022. Overview of Green Energy as a Real Strategic Option for Sustainable Development. Energies 15(22), DOI: 10.3390/en15228573.
5.
Asim et. al. 2022 – Asim, M., Qamar, A., Kanwal, A., Uddin, G., Abbas, M.M., Farooq, M., Kalam, M.A., Moussa, M. and Shahapurkar, K. 2022. Opportunities and Challenges for Renewable Energy Utilization in Pakistan. Sustainability 14(17), DOI: 10.3390/su141710947.
6.
Bordin et al. 2021 – Bordin, C., Mishra, S., Safari, A. and Eliassen, F. 2021. Educating the energy informatics specialist: opportunities and challenges in light of research and industrial trends. SN Applied Sciences 3, DOI: 10.1007/s42452-021-04610-8.
7.
Borowski, P.F. 2021. Digitization, Digital Twins, Blockchain, and Industry 4.0 as Elements of Management Process in Enterprises in the Energy Sector. Energies 14(7), DOI: 10.3390/en14071885.
8.
Bošnjaković et. al. 2023 – Bošnjaković, M., Santa, R., Crnac, Z. and Bošnjaković, T. 2023. Environmental Impact of PV Power Systems. Sustainability 15(15), DOI: 10.3390/su151511888.
9.
Chu, S. and Majumdar, A. 2012. Opportunities and challenges for a sustainable energy future. Nature 488, pp. 294–303, DOI: 10.1038/nature11475.
10.
Constantino et al. 2022 – Constantino, E.D.G., Teixeira, S.F.C.F., Teixeira, J.C. and Barbosa, F.V. 2022. Innovative Solar Concentration Systems and Its Potential Application in Angola. Energies 15(19), DOI: 10.3390/en15197124.
11.
De la Cruz-Lovera et. al. 2017 – De la Cruz-Lovera, C., Perea-Moreno, A.-J., De la Cruz-Fernández, J.L., Alvarez-Bermejo, J.A. and Manzano-Agugliaro, F. 2017. Worldwide Research on Energy Efficiency and Sustainability in Public Buildings. Sustainability 9(8), DOI: 10.3390/su9081294.
12.
Eichenauer, E. and Gailing, L. 2022. What Triggers Protest? – Understanding Local Conflict Dynamics in Renewable Energy Development. Land 11(10), DOI: 10.3390/land11101700.
15.
Fang, L. 2023. Dynamics of renewable energy index in G20 countries: influence of green financing. Environmental Science and Pollution Research 30, 63811–63824, DOI: 10.1007/s11356-023-26804-w.
16.
Farghali, et al. 2023 – Farghali, M., Osman, A.I., Chen, Z., Abdelhaleem, A., Ihara, I., Mohamed, I.M.A., Yap, P.-S. and Rooney, D.W. 2023. Social, environmental, and economic consequences of integrating renewable energies in the electricity sector: a review. Environmental Chemistry Letters 21, pp. 1381–1418, DOI: 10.1007/s10311-023-01587-1.
17.
Goldberg, Z.A. 2023. Solar energy development on farmland: Three prevalent perspectives of conflict, synergy and compromise in the United States. Energy Research & Social Science 101, DOI: 10.1016/j.erss.2023.103145.
18.
Grabara, et al. 2021 – Grabara, J., Tleppayev, A., Dabylova, M., Mihardjo, L.W.W. and Dacko-Pikiewicz, Z. 2021. Empirical Research on the Relationship amongst Renewable Energy Consumption, Economic Growth and Foreign Direct Investment in Kazakhstan and Uzbekistan. Energies 14(2), DOI: 10.3390/en14020332.
19.
Gulaliyev et al. 2020 – Gulaliyev, M.G., Mustafayev, E.R. and Mehdiyeva, G.Y. 2020. Assessment of Solar Energy Potential and Its Ecological-Economic Efficiency: Azerbaijan Case. Sustainability 12(3), DOI: 10.3390/su12031116.
20.
Holechek et al. 2022 – Holechek, J.L., Geli, H.M.E., Sawalhah, M.N. and Valdez, R. 2022. A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050? Sustainability 14(8), DOI: 10.3390/su14084792.
21.
IEA 2024. Massive expansion of renewable power opens door to achieving global tripling goal set at COP28. [Online]
https://www.iea.org/news/massi... [Accessed: 2024-02-08].
22.
Igliński et al. 2023 – Igliński, B., Kiełkowska, U., Pietrzak, M.B., Skrzatek, M., Kumar, G. and Piechota, G. 2023. The regional energy transformation in the context of renewable energy sources potential. Renewable Energy 218, DOI: 10.1016/j.renene.2023.119246.
24.
Kabeyi, M.J.B. and Olanrewaju, O.A. 2023. Smart grid technologies and application in the sustainable energy transition: a review. International Journal of Sustainable Energy 42(1), pp. 685–758, DOI: 10.1080/14786451.2023.2222298.
25.
Kangas et al. 2021 – Kangas, H.L., Ollikka, K., Ahola, J. and Kim, Y. 2021. Digitalization in wind and solar power technologies. Renewable and Sustainable Energy Reviews 150, DOI: 10.1016/j.rser.2021.111356.
26.
Koval et al. 2023 – Koval, V., Sribna, Y., Prokopenko, O., Filipishyna, L., Ivata, V. and Arsawan, I.W.E. 2023. Management Supply Chains Electric Vehicle Battery Recycling. Circular Economy for Renewable Energy, pp. 33–54, DOI: 10.1007/978-3-031-30800-0_3.
27.
Kumar, C.R.J. and Majid, M.A. 2020. Renewable energy for sustainable development in India: current status, future prospects, challenges, employment, and investment opportunities. Energy, Sustainability and Society 10(2), pp. 1–36, DOI: 10.1186/s13705-019-0232-1.
28.
Kumar, M. 2020. Social, Economic, and Environmental Impacts of Renewable Energy Resources. [In:] Ed. by Okedu K.E., Tahour A., Aissaou A.G. Wind Solar Hybrid Renewable Energy System, DOI: 10.5772/intechopen.89494.
29.
Laveneziana et al. 2023 – Laveneziana, L., Prussi, M. and Chiaramonti, D. 2023. Critical review of energy planning models for the sustainable development at company level. Energy Strategy Reviews 49(4), DOI: 10.1016/j.esr.2023.101136.
30.
Lay, C. and Johnson, D.K. 2023. Don’t Look Up as Philosophy: Comets, Climate Change, and Why the Snacks Are Not Free. [In:] Eds. by Johnson D.K., Kowalski, D.A. Lay, C., Engels K.S. The Palgrave Handbook of Popular Culture as Philosophy, pp. 1–37, DOI: 10.1007/978-3-319-97134-6_112-2.
31.
Liu et al. 2019 – Liu, L., Zhang, M. and Zhao, Z. 2019. The Application of Real Option to Renewable Energy Investment: A Review. Energy Procedia 158, pp. 3494–3499, DOI: 10.1016/j.egypro.2019.01.921.
32.
Lu et. al. 2020 – Lu, Y., Khan, Z.A., Alvarez-Alvarado, M.S., Zhang, Y., Huang, Z. and Imran, M. 2020. A Critical Review of Sustainable Energy Policies for the Promotion of Renewable Energy Sources. Sustainability 12, DOI: 10.3390/su12125078.
33.
Maka, A. and Alabid, J. 2022. Solar energy technology and its roles in sustainable development. Clean Energy 6(3), pp. 476–483, DOI: 10.1093/ce/zkac023.
34.
Mikhno et al. 2022 – Mikhno, I., Redkva, O., Udovychenko, V., Tsimoshynska, O., Koval, V. and Kopacz, M. 2022. Sustainable energy supply management in the mechanical-engineering industry. Polityka Energetyczna – Energy Policy Journal 25(4), pp. 39–54, DOI: 10.33223/epj/156627.
35.
Mingxiang, Zh. and Xing, L. 2022. Influence of green finance and renewable energy resources over the sustainable development goal of clean energy in China. Resources Policy 78, DOI: 10.1016/j.resourpol.2022.102816.
36.
Ntanos et. al. 2018 – Ntanos, S., Skordoulis, M., Kyriakopoulos, G., Arabatzis, G., Chalikias, M., Galatsidas, S., Batzios, A. and Katsarou, A. 2018. Renewable Energy and Economic Growth: Evidence from European Countries. Sustainability 10, DOI: 10.3390/su10082626.
37.
Olczak et al. 2023 – Olczak, P., Koval, V., Yanovska, V. and Lomachynska, I. 2023. The Use of Electricity Storage on the Path to Prosumer Energy Self-sufficiency: Eastern Europe Case Study. [In:] Circular Economy for Renewable Energy, pp. 19–31, DOI: 10.1007/978-3-031-30800-0_2.
38.
Pani et al. 2022 – Pani, A., Shirkole, S.S. and Mujumdar, A.S. 2022. Importance of renewable energy in the fight against global climate change. Drying Technology 40(13), pp. 2581–2582, DOI: 10.1080/07373937.2022.2119324.
39.
Peidong et.al. 2009 – Peidong, Z., Yanli, Y., Jin, S., Yonghong, Z., Lisheng, W. and Xinrong, L. 2009. Opportunities and challenges for renewable energy policy in China, Renewable and Sustainable Energy Reviews 13(2), pp. 439–449, DOI: 10.1016/j.rser.2007.11.005.
40.
Pignatti, N. 2023. Energy Security Challenges and Opportunities for the Country of Georgia. Comparative Southeast European Studies 71(1), pp. 119–133, DOI: 10.1515/soeu-2022-0031.
41.
Podolchak et. al. 2023 – Рodolchak, N., Karkovska, V., Tsygylyk, N., Dziurakh, Y. and Bilyk, O. 2023. Synergetic approach for sustainable public service personnel management during Covid-19. [In:] E3S Web of Conferences 408, DOI: 10.1051/e3sconf/202340801015.
42.
Podolchak et al. 2023 – Podolchak, N., Bilyk, O., Karkovska, V., Tsygylyk, N. and Vesolovska, M. 2023. Methods for assessing emotional intelligence: Prospects for application in public administration in Ukraine. Problems and Perspectives in Management 21(2), pp. 503–516, DOI: 10.21511/ppm.21(2).2023.47.
43.
Saba, C.S. and Ngepah, N. 2022. Convergence in renewable energy sources and the dynamics of their determinants: An insight from a club clustering algorithm. Energy Reports 8, pp. 3483–3506, DOI: 10.1016/j.egyr.2022.01.190.
44.
Sharma et al. 2023 – Sharma, A., Mahajan, P. and Garg, R. 2023. End-of-life solar photovoltaic panel waste management in India: forecasting and environmental impact assessment. International Journal of Environmental Science and Technology 21, pp. 1961–1980, DOI: 10.1007/s13762-023-04953-2.
45.
Shinwari et. al. 2022 – Shinwari, R., Yangjie, W., Payab, A.H., Kubiczek, J. and Dördüncü, H. 2022. What drives investment in renewable energy resources? Evaluating the role of natural resources volatility and economic performance for China. Resources Policy 77(102712), DOI: 10.1016/j.resourpol.2022.102712.
46.
Siala et al. 2021 – Siala, K., Chowdhury, A.K., Dang, T.D. and Galelli, S. 2021. Solar energy and regional coordination as a feasible alternative to large hydropower in Southeast Asia. Nature Communications 12, DOI: 10.1038/s41467-021-24437-6.
47.
Soundarrajan, P. and Vivek, N. 2016. Green finance for sustainable green economic growth in India. Agricultural Economics 62(1), pp. 35–44, DOI: 10.17221/174/2014-AGRICECON.
48.
Sribna et al. 2023 – Sribna, Y., Skakovska, S., Paniuk, T. and Hrytsiuk, I. 2023. The economics of technology transfer in the environmental safety of enterprises for the energy transition. Economics Ecology Socium 7(1), pp. 84–96, DOI: 10.31520/2616-7107/2023.7.1-8.
49.
Sun, Y. and Li, Y. 2022. Measuring dynamics of solar energy resource quality: Methodology and policy implications for reducing regional energy inequality. Renewable Energy 197, pp. 138–150, DOI: 10.1016/j.renene.2022.07.122.
50.
Tawalbeh et. al. 2021 – Tawalbeh, M., Al-Othman, A., Kafiah, F., Abdelsalam, E., Almomani, F. and Alkasrawi, M. 2021. Environmental impacts of solar photovoltaic systems: A critical review of recent progress and future outlook. Science of The Total Environment 759, DOI: 10.1016/j.scitotenv.2020.143528.
51.
Tiruye et. al. 2021 – Tiruye, G.A., Besha, A.T., Mekonnen, Y.S., Benti, N.E., Gebreslase, G.A. and Tufa, R.A. 2021. Opportunities and Challenges of Renewable Energy Production in Ethiopia. Sustainability 13, DOI: 10.3390/su131810381.
52.
Tsangas et al. 2023 – Tsangas, M., Papamichael, I. and Zorpas, A.A. 2023. Sustainable Energy Planning in a New Situation. Energies 16(4), DOI: 10.3390/en16041626.
53.
Vostriakova, V. 2021. The Renewable Energy Sources Contribution to Sustainable Economic Growth. [In:] IEEE 2nd KhPI Week on Advanced Technology (KhPIWeek), Ukraine, DOI: 10.1109/KHPIWEEK53812.2021.9569993.
55.
Wen et. al. 2021 – Wen, D., Gao, W., Qian, F., Gu, Q. and Ren, J. 2021. Development of solar photovoltaic industry and market in China, Germany, Japan and the United States of America using incentive policies. Energy Exploration & Exploitation 39(5), pp. 1429–1456, DOI: 10.1177/0144598720979256.
57.
Zhang et al. 2023 – Zhang, J., Ullah, S. and Khan, K. 2023. The prominence of fossil energy resources in ecological sustainability of BRICS: the key role of institutional worth. Frontiers in Environmental Science 10, DOI: 10.3389/fenvs.2022.1084314.
58.
Żywiołek et. al. 2021 – Żywiołek, J., Rosak-Szyrocka, J. and Mrowiec, M. 2021. Knowledge Management in Households about Energy Saving as Part of the Awareness of Sustainable Development. Energies 14(24), DOI: 10.3390/en14248207.