ORIGINAL PAPER
Autonomous constant voltage generator
More details
Hide details
1
Kazakh National Agrarian Research University, Kazakhstan
Submission date: 2022-08-24
Final revision date: 2022-09-05
Acceptance date: 2022-09-05
Publication date: 2022-09-29
Polityka Energetyczna – Energy Policy Journal 2022;25(3):35-50
KEYWORDS
TOPICS
ABSTRACT
The relevance of this research work is due to the fact that farms and other farms are located at a considerable distance from sources of centralized power supply. Therefore, it is necessary to introduce autonomous generators as the main units that ensure the uninterrupted functioning of energy systems. The purpose of this research work is to analyze the features of the functioning of an autonomous constant voltage generator, as well as to determine the basic physical laws that are of fundamental importance in its operation. The basis of the methodological approach in this scientific study is a combination of methods of system analysis with an analytical study of the general principles of operation of such devices, which are of fundamental importance from the point of view of ensuring the proper level of operational reliability. The main results obtained in this research work should be considered the definition of equations for calculating the instantaneous values of the three-phase excitation current, as well as the peak value of the three-phase excitation current of an autonomous constant voltage generator. The results obtained in the course of this scientific research and the conclusions formulated on their basis are of fundamental importance for developers of modern technological systems, including autonomous constant voltage generators, as well as for employees of technological services of modern industrial enterprises, whose professional responsibility includes the practical operation of such devices to solve a complex of technical tasks facing these enterprises.
METADATA IN OTHER LANGUAGES:
Polish
Autonomiczny generator stałego napięcia
energia elektryczna, wirnik, silnik asynchroniczny, stojan, strumień magnetyczny
Ważność niniejszej pracy badawczej wynika z faktu, że gospodarstwa rolne i inne gospodarstwa położone są w znacznej odległości od źródeł scentralizowanego zasilania. Dlatego konieczne jest wprowadzenie autonomicznych generatorów jako głównych jednostek zapewniających nieprzerwane funkcjonowanie systemów energetycznych. Celem niniejszego artykułu jest analiza cech funkcjonowania autonomicznego generatora napięcia stałego, a także określenie podstawowych praw fizycznych mających fundamentalne znaczenie w jego działaniu. Podstawą podejścia metodologicznego jest połączenie metod analizy systemu z opracowaniem analitycznym ogólnych zasad działania tego typu urządzeń, które mają fundamentalne znaczenie z punktu widzenia zapewnienia odpowiedniego poziomu niezawodności działania. Za główne wyniki uzyskane należy uznać określenie równań do obliczania wartości chwilowych prądu wzbudzenia trójfazowego, a także wartości szczytowej prądu wzbudzenia trójfazowego autonomicznego generatora napięcia stałego. Uzyskane w toku badań naukowych wyniki i sformułowane na ich podstawie wnioski są bardzo ważne dla twórców nowoczesnych systemów technologicznych, w tym autonomicznych generatorów stałego napięcia, a także dla pracowników służb technologicznych nowoczesnych przedsiębiorstw przemysłowych, których odpowiedzialność zawodowa obejmuje praktyczną obsługę takich urządzeń w celu rozwiązania kompleksu zadań technicznych stojących przed przedsiębiorstwami.
REFERENCES (23)
1.
Achkar et al. 2021 – Achkar, M.E., Mbayed, R., Salloum, G. and Monmasson, E. 2021. New voltage compensation of a standalone CDFIG supplying unbalanced loads. International Journal of Electrical Power & Energy Systems 124, DOI: 10.1016/j.ijepes.2020.106396.
2.
Babayomi et al. 2021 – Babayomi, O., Zhang, Z., Dragicevic, T., Heydari, R., Li, Y., Garcia, C., Rodriguez, J. and Kennel, R. 2021. Advances and opportunities in the model predictive control of microgrids: Part II – Secondary and tertiary layers. International Journal of Electrical Power & Energy Systems 134(4), DOI: 10.1016/j.ijepes.2021.107339.
3.
Castillo-Garcia et al. 2016 – Castillo-Garcia, P., Hernandez, L.M. and Gil, P. 2016. Indoor navigation strategies for aerial autonomous systems. Oxford: Butterworth-Heinemann.
4.
Cazaurang et al. 2020 – Cazaurang, F., Cohen, K. and Kumar, M. (eds.). 2020. Multi-rotor Platform Based UAV Systems. Oxford: Elsevier.
5.
Cheban, V.M. and Tolkatsky, R.A. 2011. Characteristics of an autonomous asynchronous generator with a rotating stator. Systems of Analysis and Data Processing 4(45), pp. 121–128.
6.
Chuang et al. 2016 – Chuang, S.-J., Hong, C.-M. and Chen, C.-H. 2016. Design of intelligent control for stabilization of microgrid system. International Journal of Electrical Power & Energy Systems 82, pp. 569–578, DOI: 10.1016/j.ijepes.2016.04.030.
7.
Coppola, P. and Esztergar-Kiss, D. 2019. Autonomous vehicles and future mobility. Oxford: Elsevier.
8.
Dimitrakopoulos et al. 2021 – Dimitrakopoulos, G., Tsakanikas, A. and Panagiotopoulos, E. 2021. Autonomous vehicles. Oxford: Elsevier.
9.
Fialko et al. 1994 – Fialko, N., Prokopov, V.G., Meranova, N.O., Borisov, Y., Korzhik, V.N. and Sherenkovskaya, G.P. 1994. Single particle-substrate thermal interaction during gas-thermal coatings fabrication. Fizika i Khimiya Obrabotki Materialov (1), pp. 70–78.
10.
Konstantinova et al. 2021 – Konstantinova, S.V., Kapustinsky, A.Yu. and Yaroshevich, T.M. 2021. Calculation of the capacity for the operation of a mini-power complex based on an asynchronous generator in an autonomous mode. Energy. Proceedings of Higher Educational Institutions and Energy Associations of the CIS 64(1), pp. 40–50.
11.
Li et al. 2020 – Li, B., Li, Y., He, J. and Zheng, Y. 2020. Protection technologies of Ultra-High-Voltage AC transmission systems. London: Academic Press.
12.
Ordatayev, O. and Keshuov, S. 2013. Choosing of the excitation current of the autonomous asynchronous generator with phase-wound rotor. Far East Journal of Electronics and Communications 11(1), pp. 23–34.
13.
Peleshenko et al. 2017 – Peleshenko, S., Korzhyk, V., Voitenko, O., Khaskin, V. and Tkachuk, V. 2017. Analysis of the current state of additive welding technologies for manufacturing volume metallic products (review). Eastern-European Journal of Enterprise Technologies 3(1(87)), pp. 42–52, DOI: 10.15587/1729-4061.2017.99666.
14.
Serban, I. and Ion, C.P. 2017. Microgrid control based on a grid-forming inverter operating as virtual synchronous generator with enhanced dynamic response capability. International Journal of Electrical Power & Energy Systems 89, pp. 94–105, DOI: 10.1016/j.ijepes.2017.01.009.
15.
Sguarezi, A. 2021. Model predictive control for doubly-fed induction generators and three-phase power converters. Oxford: Elsevier.
16.
Shankar, G. and Mukherjee, V. 2016. Load frequency control of an autonomous hybrid power system by quasi-oppositional harmony search algorithm. International Journal of Electrical Power & Energy Systems 78, pp. 715–734, DOI: 10.1016/j.ijepes.2015.11.091.
17.
Szederkenyi et al. 2018 – Szederkenyi, G., Magyar, A. and Hangos, K. 2018. Analysis and control of polynomial dynamic models with biological applications. London: Academic Press.
18.
Vanashi et al. 2021 – Vanashi, H.K., Mohammadi, F.D., Verma, V., Solanki, J. and Solanki, S.K. 2021. Hierarchical multi-agent-based frequency and voltage control for a microgrid power system. International Journal of Electrical Power & Energy Systems 135, DOI: 10.1016/j.ijepes.2021.107535.
19.
Vienovic et al. 2021 – Vienovic, S., Stojic, D. and Joksimovic, D. 2021. Optimized four-parameter PID controller for AVR systems with respect to robustness. International Journal of Electrical Power & Energy Systems 135, DOI: 10.1016/j.ijepes.2021.107529.
20.
Walsh, S.M. and Strano, M.S. 2018. Robotic systems and autonomous platforms. Cambridge: Woodhead Publishing.
21.
Xhafa, F. 2021. Autonomous and connected heavy vehicle technology. London: Academic Press.
22.
Zhao et al. 2018 – Zhao, C., Mallada, E., Low, S.H. and Bialek, J. 2018. Distributed plug-and-play optimal generator and load control for power system frequency regulation. International Journal of Electrical Power & Energy Systems 101, pp. 1–12, DOI: 10.1016/j.ijepes.2018.03.014.
23.
Zhou et al. 2018 – Zhou, X., Zhou, L., Chen, Y., Guerrero, J.M., Luo, A., Wu, W. and Yang, L. 2018. A microgrid cluster structure and its autonomous coordination control strategy. International Journal of Electrical Power & Energy Systems, 100, pp. 69–80, DOI: 10.1016/j.ijepes.2018.02.031.