ORIGINAL PAPER
Mathematical model and characteristics of dynamic modes for managing the asynchronous motors at voltage asymmetry
More details
Hide details
1
Management Department, AGH University of Science and Technology, Kraków, Poland
2
Institution of Social-Humanitarian Science, Dnipro University of Technology, Ukraine
3
Dnipro University of Technology, Ukraine
4
Universidad Nacional de San Agustin de Arequipa, Peru
5
South Ukrainian National Pedagogical University named after K. D. Ushynsky, Ukraine
Submission date: 2023-12-02
Final revision date: 2024-07-09
Acceptance date: 2024-07-29
Publication date: 2024-12-11
Corresponding author
Yuliya Pazynich
Management Department, AGH University of Krakow, Krakow, Poland
Polityka Energetyczna – Energy Policy Journal 2024;27(4):39-58
KEYWORDS
TOPICS
ABSTRACT
The development of a comprehensive mathematical model depicting an asynchronous motor in generalised (resultant) vectors, accounting for voltage asymmetry, stands as a significant stride in this research endavour. This model serves as a powerful tool for conducting an exhaustive analysis of the motor’s characteristics in dynamic operational modes. Its unique capability lies in enabling a granular examination of the impact of both amplitude and phase asymmetry on the motor’s dynamic performance, thereby providing a nuanced understanding crucial for the effective management of asynchronous motors operating under the conditions of voltage asymmetry. In this pursuit, distinct models for an asynchronous motor are delineated separately for the direct and reverse sequence, conceptualised as two distinct machines integrated on a single shaft. Additionally, a unified model is presented, encapsulating the voltage equations along the α and β axes within the fixed coordinate system of the generalised machine. The empirical findings derived from this research present compelling insights into the behaviour of asynchronous motors in transient modes during direct starts under varying degrees of voltage asymmetry. These findings, summarised in a tabulated format, illustrate a clear correlation between the degree of voltage asymmetry and the subsequent reduction in motor performance indices. These findings not only enrich the theoretical understanding of asynchronous motor behaviour in the presence of voltage asymmetry but also lay a solid foundation for devising practical approaches to optimize their performance, further enhancing their operational efficiency and reliability.
METADATA IN OTHER LANGUAGES:
Polish
Model matematyczny i charakterystyki trybów dynamicznych do zarządzania silnikami asynchronicznymi
przy asymetrii napięcia
silnik asynchroniczny, zarządzanie asymetrią napięcia, wektory uogólnione, model, matematyczny, tryby dynamiczne
Opracowanie kompleksowego modelu matematycznego przedstawiającego silnik asynchroniczny w uogólnionych (wypadkowych) wektorach, uwzględniających asymetrię napięcia, stanowi znaczący krok w tym przedsięwzięciu badawczym. Model ten służy jako potężne narzędzie do przeprowadzania wyczerpującej analizy charakterystyk silnika w dynamicznych trybach pracy. Jego unikalna zdolność polega na umożliwieniu szczegółowego badania wpływu zarówno asymetrii amplitudy, jak i fazy na dynamiczną wydajność silnika, zapewniając w ten sposób niuansowe zrozumienie kluczowe dla skutecznego zarządzania silnikami asynchronicznymi pracującymi w warunkach asymetrii napięcia. W tym dążeniu odrębne modele silnika asynchronicznego są określane oddzielnie dla sekwencji bezpośredniej i odwrotnej, pojmowanej jako dwie odrębne maszyny zintegrowane na jednym wale. Dodatkowo przedstawiono ujednolicony model, obejmujący równania napięciowe wzdłuż osi α i β w stałym układzie współrzędnych uogólnionej maszyny. Wyniki empiryczne uzyskane w ramach tych badań przedstawiają przekonujące spostrzeżenia na temat zachowania silników asynchronicznych w trybach przejściowych podczas rozruchów bezpośrednich przy różnym stopniu asymetrii napięcia. Wyniki te, podsumowane w formie tabeli, ilustrują wyraźną korelację między stopniem asymetrii napięcia a późniejszym zmniejszeniem wskaźników wydajności silnika. Wyniki te nie tylko wzbogacają teoretyczne zrozumienie zachowania silnika asynchronicznego w obecności asymetrii napięcia, ale także stanowią solidną podstawę do opracowywania praktycznych podejść w celu optymalizacji ich wydajności, co dodatkowo zwiększa ich wydajność operacyjną i niezawodność.
REFERENCES (43)
1.
Akagi et al. 1983 – Akagi, H., Kanazawa, Y. and Nabae, A. 1983. Generalized theory of the instantaneous reactive power in three-phase circuits. IPEC’83 – Int. Power Electronics Conf., pp. 1375–1386.
2.
Asalomia, B. 2020. Analysis of the quality indicators of electricity and of the equipment used in the navigation boat. Scientific Bulletin of Naval Academy XXIII, 2, pp. 251–259, DOI: 10.21279/1454-864x-20-i2-102.
3.
Barić et al. 2019 – Barić, T., Glavaš, H. and Barukčić, M. 2019. Impact of balance resistor uncertainty on voltages across supercapacitors. Journal of Energy Storage 22, pp. 131–136, DOI: 10.1016/j.est.2019.02.005.
4.
Bently et al. 2002 – Bently, E., Hatch, Ch. and Grissom, B. 2002. High Vibration in an Electric Motor. Fundamentals of Rotating Machinery Diagnostics, pp. 569–578, DOI: 10.1115/1.801frm_ch28.
5.
Beshta et al. 2019 – Beshta, A., Beshta, A., Balakhontsev, A. and Khudolii, S. 2019. Performances of Asynchronous Motor within Variable Frequency Drive with Additional Power Source Plugged via Combined Converter. IEEE 6th International Conference on Energy Smart Systems (ESS), pp. 11–20, DOI: 10.1109/ess.2019.8764192.
6.
Bondarenko et al. 2009 – Bondarenko, V., Dychkovskiy, R. and Falshtynskiy, V. 2009. Synthetic Stowing of Rockmass at Borehole Underground Coal Gasification (BUCG). Deep Mining Challenges, pp. 169–177, DOI: 10.1201/noe0415804288.ch18.
7.
Bosma, A. 2003. Condition monitoring and maintenance strategies for high-voltage circuit-breakers. 6th International Conference on Advances in Power System Control, Operation and Management. Proceedings 11, pp. 191–196, DOI: 10.1049/cp:20030585.
8.
Cabana et al. 2018 – Cabana, E., Falshtynskyi, V., Saik, P., Lozynskyi, V. and Dychkovskyi, R. 2018. A concept to use energy of air flows of technogenic area of mining enterprises. E3S Web of Conferences 60, DOI: 10.1051/e3sconf/20186000004.
9.
Dychkovskyi et al. 2018 – Dychkovskyi, R., Falshtynskyi, V., Ruskykh, V., Cabana, E. and Kosobokov, O. 2018. A modern vision of simulation modelling in mining and near mining activity. E3S Web of Conferences 60, DOI: 10.1051/e3sconf/20186000014.
10.
Dychkovskyi et al. 2019 – Dychkovskyi, R., Tabachenko, M., Zhadiaieva, K. & Cabana, E. 2019. Some aspects of modern vision for geo-energy usage. E3S Web of Conferences 123, DOI: 10.1051/e3sconf/201912301010.
11.
Escobar et al. 2005 – Escobar, G., Martinez, P.R. and Valdez, A.A. 2005. A Repetitive-based Controller to Compensate for Harmonic Distortion in the Output Voltage of a Boost Converter. IEEE 36th Conference on Power Electronics Specialists, pp. 12–31, DOI: 10.1109/pesc.2005.1582016.
12.
High-voltage TT. 2016. High-voltage test techniques for low-voltage equipment. Definitions, test and procedure requirements, test equipment. DOI: 10.3403/30265514.
13.
Jahns, T.M. 1996. Variable Frequency Permanent Magnet AC Machine Drives. Portico. Power Electronics and Variable Frequency Drives, pp. 277–331, DOI: 10.1002/9780470547113.ch6.
14.
Kolb, А. 2005. Power quality control in electric drive systems with common direct current supply buses. Naukovyi visnyk NGU 7, pp. 85–91.
15.
Kolb, А. 2006. Method Іх, Іу theories of instantaneous power in problems of power quality management in electric drive systems with capacitive storage. Vistnyk Kremenchutskoho derzavnoho politehnichnoho universytetu 3(38), pp. 65–67.
16.
Kolb, A. 2011. Theory of electric drive. 2-nd edition. D.: National Mining University, 565 p.
17.
Kolb, A. 2013. Energy saving in electrified transport by capacity storages. Energy Efficiency Improvement of Geotechnical Systems, pp. 131–134, DOI: 10.1201/b16355-17.
18.
Kolb et al. 2020 – Kolb, A., Pazynich, Y., Mirek, A. and Petinova, O. 2020. Influence of voltage reserve on the parameters of parallel power active compensators in mining. E3S Web of Conferences 201, DOI: 10.1051/e3sconf/202020101024.
19.
Kolber, P. and Piechocki, J. 2008. Simulation Model to Evaluate Voltage Asymmetry in a Rural Low Voltage. Technical Sciences 11(1), pp. 77–86, DOI: 10.2478/v10022-008-0005-0.
20.
Kononenko et al. 2023 – Kononenko, M., Khomenko, O., Sadovenko, I., Sobolev, V., Pazynich, Y. and Smoliński, A. 2023. Managing the rock mass destruction under the explosion. Journal of Sustainable Mining 22(3), p. 240, DOI: 10.46873/2300-3960.1391.
21.
Kononenko et al. 2024 – Kononenko, M., Khomenko, O., Kosenko, A., Myronova, I., Bash, V. and Pazynich, Y. 2024. Raises advance using emulsion explosives. E3S Web of Conferences 526, DOI: 10.1051/e3sconf/202452601010.
22.
Kostic, M. 2012. Effects of Voltage Quality on Induction Motors’ Efficient Energy Usage. Induction Motors – Modelling and Control, DOI: 10.5772/51223.
23.
Kovach, K.P. and Rats, І.L. 1963. Processes in alternating current machines. Gosenergoizdat, 744 p.
24.
Kuznetsov et al. 2021 – Kuznetsov, V., Tryputen, M., Tytiuk, V., Rozhnenko, Z., Levchenko, S. and Kuznetsov, V. 2021. Modeling of thermal process in the energy system “Electrical network – asynchronous motor”. E3S Web of Conferences 280, DOI: 10.1051/e3sconf/202128005003.
25.
Lobry et al. 2008 – Lobry, J., Nens, E. and Broche, C. 2008. Symmetric Components and Numerical Modeling. [In:] The Finite Element Method for Electromagnetic Modeling. Portico, pp. 369–404, DOI: 10.1002/9780470611173.ch9.
26.
Lusk et al. 2005 – Lusk, E., Butler, R. and Pieper, S.C. 2015. Asynchronous Dynamic Load Balancing. Programming Models for Parallel Computing, pp. 187–204, DOI: 10.7551/mitpress/9486. 003.0010.
27.
Malyar, V. 2020. Mathematical modeling start-up and steady state modes of asynchronous motors operation with capacitive compensation of reactive power. Przegląd elektrotechniczny 1(11), pp. 111–116, DOI: 10.15199/48.2020.11.22.
28.
Moschynskyi, Ju.A. and Petrov, A.P. 2002. Mathematical model of an asymmetrical asynchronous motor based on substitution schemes for transient modes. Elektromekhanika 3, pp. 24–30.
29.
Nabae, A. and Tanaka, T.A. 1996. new definition of instantaneous active-reactive current and power based on instantaneous space vectors on polar coordinates in three-phase circuits. IEEE Transactions on Power Delivery 11(3), pp. 1238–1243, DOI: 10.1109/61.517477.
30.
Polyanska et al. 2022 – Polyanska, A., Savchuk, S., Dudek, M., Sala, D., Pazynich, Y. and Cicho, D. 2022. Impact of digital maturity on sustainable development effects in energy sector in the condition of Industry 4.0. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 6, pp. 97–103, DOI: 10.33271/nvngu/2022-6/097.
31.
Polyanska et al. 2023 – Polyanska, A., Pazynich, Y., Sabyrova, M. and Verbovska, L. 2023. Directions and prospects of the development of educational services in conditions of energy transformation: the aspect of the coal industry. Polityka Energetyczna – Energy Policy Journal 26(2), pp. 195–216, DOI: 10.33223/epj/162054.
32.
Polyanska et al. 2024 – Polyanska, A., Pazynich, Y., Mykhailyshyn, K., Babets, D. and Toś, P. 2024. Aspects of energy efficiency management for rational energy resource utilization. Rudarsko-Geološko-Naftni Zbornik 39(3), pp. 13–26, DOI: 10.17794/rgn.2024.3.2.
33.
Ponce et al. 2017 – Ponce, P., Molina, A., Mata, O., Ibarra, L. and MacCleery, B. 2017. Power Flow and Electric Machinery Basics. Power System Fundamentals, pp. 55–121, DOI: 10.1201/9781315148991-2.
34.
Robery, P. 2018. Daily surveillance and routine inspection. Recommendations for the Inspection, Maintenance and Management of Car Park Structures, pp. 47–49, DOI: 10.1680/rimmcps.58392.047.
35.
Robyns et al. 2000 – Robyns, B., Berthereau, F., Cossart, G., Chevalier, L., Labrique, F. and Buyse, H. 2000. A methodology to determine gains of induction motor flux observers based on a theoretical parameter sensitivity analysis. IEEE Transactions on Power Electronics 15(6), pp. 983–995, DOI: 10.1109/63.892703.
36.
Seheda et al. 2024 – Seheda, M.S., Beshta, O.S., Gogolyuk, P.F., Blyznak, Yu.V., Dychkovskyi, R.D. and Smoliński, A. 2024. A mathematical model for the management of the wave processes in three-winding transformers with consideration of the main magnetic flux in the mining industry. Journal of Sustainable Mining 23(1), pp. 20–39, DOI: 10.46873/2300-3960.1402.
37.
Shamir et al. 2021 – Shamir, O., Schwartz, C., Garfinkel, C. and Paldor, N. 2021. The power distribution between the symmetric and anti-symmetric components of the tropical wavenumber-frequency spectrum. EGU General Assembly 2021, DOI: 10.5194/egusphere-egu21-6246.
38.
Shen, P. 2009. Dynamic Characteristics of the Intelligent Compactor Model with Adjustable Vibration Modes. International Conference on Transportation Engineering 23, pp. 1–45, DOI: 10.1061/41039(345)384.
39.
Sobolev et al. 2020 – Sobolev, V., Bilan, N., Dychkovskyi, R., Caseres Cabana, E. and Smolinski, A. 2020. Reasons for breaking of chemical bonds of gas molecules during movement of explosion products in cracks formed in rock mass. International Journal of Mining Science and Technology 30(2), pp. 265–269, DOI: 10.1016/j.ijmst.2020.01.002.
40.
Stewart, D. 1997. Motor vehicle occupant protection for children. Injury Prevention 3(4), pp. 312–312, DOI: 10.1136/ip.3.4.312.
41.
Sytchev, S.D. and Chernyi, A.P. 2002. Modes of operation of an asynchronous motor with asymmetry of the supply voltage. Vistnyk Kremenchutskoho derzavnoho politehnichnoho universytetu 1(12), pp. 266–269.
42.
Vladyko et al. 2008 – Vladyko, O., Maltsev, D., Sala, D., Cichoń, D., Buketov, V. and Dychkovskyi, R. 2022. Simulation of leaching processes of polymetallic ores using the similatory theorem. Rudarsko-Geološko-Naftni Zbornik 37(5), pp. 169–180, DOI: 10.17794/rgn.2022.5.14.
43.
Yin et al. 2005 – Yin, M., Li, G., Zhou, M. and Liu, Y. 2005. Analysis and Control of Wind Farm Incorporated VSC-HVDC in Unbalanced Conditions. IEEE/PES Transmission; Distribution Conference; Exposition: Asia and Pacific, pp. 14–31, DOI: 10.1109/tdc.2005.1547105.