ORIGINAL PAPER
Research of the combustion process in the initial mixing section of the injection gas burner
 
More details
Hide details
1
Department of Mechanical Engineering, Manufacturing and Thermal Engineering, TECHNICAL UNIVERSITY OF SOFIA, FACULTY OF ENGINEERING AND PEDAGOGY OF SLIVEN, Bulgaria
 
2
Department of Mechanical Engineering, Manufacturing Engineering and Thermal Engineering, Technical University of Sofia, Bulgaria
 
3
Department of Mechanical Engineering, Manufacturing and Thermal Engineering, FACULTY OF ENGINEERING AND PEDAGOGY OF SLIVEN, TECHNICAL UNIVERSITY OF SOFIA, Bulgaria
 
 
Submission date: 2022-05-16
 
 
Final revision date: 2022-08-09
 
 
Acceptance date: 2022-08-16
 
 
Publication date: 2022-09-29
 
 
Corresponding author
Konstantin Vasilev Kostov   

Department of Mechanical Engineering, Manufacturing and Thermal Engineering, TECHNICAL UNIVERSITY OF SOFIA, FACULTY OF ENGINEERING AND PEDAGOGY OF SLIVEN, Sliven 59 Burgasko Shose Blvd 59, 8800, Sliven, Bulgaria
 
 
Polityka Energetyczna – Energy Policy Journal 2022;25(3):21-34
 
KEYWORDS
TOPICS
ABSTRACT
The economical combustion of gas fuel implies that it takes place with a minimum coefficient of excess air and minimal losses. Constructive, aerodynamic and physical factors have a determining influence on the completeness of combustion and the conditions of ignition. Using the ANSYS software program, the main characteristics of the combustion process in the cylindrical mixing section of a flat flame injection burner are investigated through computer simulation. A geometric model was created on which it is possible to study both straight and rotating jets. The possibility of numerically investigating the combustion of gaseous fuel (C3H8) in a confined air flow produced by injection is considered. A k-ε model of turbulence was used, which is based on the equation for turbulent kinetic energy and its dissipation rate. The purpose of the work is to study and analyze the changes and distribution of temperature and speed as well as the concentration of nitrogen oxides and carbon monoxide along the axis of the combustion chamber. The results are presented for the angles of inclination of the nozzles of 45° and 0°. Based on these, an analysis was made, where it was found that with the increase in the degree of rotation, the absolute values ​​of the temperature increase and the change in the mass concentration of the fuel along the length of the mixing section can be used to regulate the combustion process. The created numerical model can be successfully used to determine the main parameters of the burner under the same initial conditions, changing the angle of inclination of the nozzles. The obtained results can be considered as a basis for further research related to increasing the efficiency of the combustion process and lowering the harmful emissions produced by it.
METADATA IN OTHER LANGUAGES:
Polish
Badania procesu spalania w sekcji wstępnego mieszania wtrysku palnika gazowego
badania numeryczne, spalanie, paliwo gazowe, reżim i parametry projektowe, emisje szkodliwe
Ekonomiczne spalanie paliwa gazowego oznacza, że odbywa się ono przy minimalnym współczynniku nadmiaru powietrza i minimalnych stratach. Czynniki konstrukcyjne, aerodynamiczne i fizyczne mają decydujący wpływ na kompletność spalania i warunki zapłonu. Za pomocą programu ANSYS, używając symulacji komputerowej, badano główne charakterystyki procesu spalania w cylindrycznej sekcji mieszania palnika wtryskowego z płaskim płomieniem. Powstał model geometryczny, na którym można badać zarówno strumienie proste, jak i wirujące. Rozważa się możliwość numerycznego badania spalania paliwa gazowego (C3H8) w zamkniętym strumieniu powietrza wytworzonym przez wtrysk. Zastosowano model turbulencji k-ε, który opiera się na równaniu energii kinetycznej turbulencji i szybkości jej rozpraszania. Celem pracy jest badanie i analiza zmian i rozkładu temperatury, a także prędkości oraz stężenia tlenków azotu i tlenku węgla wzdłuż osi komory spalania. Wyniki przedstawiono dla kątów nachylenia dysz 45° i 0°. Na ich podstawie przeprowadzono analizę, w której stwierdzono, że wraz ze wzrostem stopnia rotacji można wykorzystać wartości bezwzględne wzrostu temperatury i zmiany stężenia masowego paliwa na długości odcinka mieszania, do regulacji procesu spalania. Stworzony model numeryczny można z powodzeniem wykorzystać do wyznaczenia głównych parametrów palnika w tych samych warunkach początkowych, zmieniając kąt nachylenia dysz. Uzyskane wyniki można traktować jako podstawę do dalszych badań związanych ze zwiększeniem wydajności procesu spalania i obniżeniem wytwarzanych przez niego szkodliwych emisji.
 
REFERENCES (22)
1.
Bernardi et al. 2003 – Bernardi, D., Colombo, V., Ghedini, E. et al. 2003. Three-dimensional modelling of inductively coupled plasma torches. The European Physical Journal D – Atomic, Molecular, Optical and Plasma Physics 22, pp. 119–125, DOI: 10.1140/epjd/e2002-00233-9.
 
2.
Chanphavong, L. and Zainal, Z.A. 2019. Characterization and challenge of development of producer gas fuel combustor: A review. Journal of the Energy Institute 92(5), pp. 1577–1590, DOI: 10.1016/j.joei.2018.07.016.
 
3.
Chung et al. 2021 – Chung, W.T., Mishra, A.A., Perakis, N. and Ihme, M. 2021. Data-assisted combustion simulations with dynamic submodel assignment using random forests. Combustion and Flame 227, pp. 172–185, DOI: 10.1016/j.combustflame.2020.12.041.
 
4.
Dwivedi et al. 2021 – Dwivedi, G., Gohil, P.P. and Behura, A.K. 2021. Numerical investigation of thermodynamic parameters for performance evaluation of cooking gas stove burner by appending of flame shield. Materials Today: Proceedings 46(11), pp. 5696–5702, DOI: 10.1016/j.matpr.2020.09.836.
 
5.
Fooladgar et al. 2021 – Fooladgar, E., Brackmann, C., Mannazhi, M., Ögren, Y., Bengtsson, P.-E., Wiinikka, H. and Tóth, P. 2021. CFD modeling of pyrolysis oil combustion using finite rate chemistry. Fuel 299, DOI: 10.1016/j.fuel.2021.120856.
 
6.
Guo et al. 2019 – Guo, X., Alavi, S., Dalir, E., Dai, J. and Mostaghimi, J. 2019. Time-resolved particle image velocimetry and 3D simulations of single particles in the new conical ICP torch. Journal of Analytical Atomic Spectrometry 34(3), pp. 469–479, DOI: 10.1039/C8JA00407B.
 
7.
Kalin et al. 2021 – Kalin, K., Penkova, M. and Zlateva, P. 2021. Cfd analysis of compressible flows through nozzles and diffusers. UPB Scientific Bulletin, Series D: Mechanical Engineering 83(2), pp. 149–158.
 
8.
Kaufmann et al. 2002 – Kaufmann, A., Nicoud, F. and Poinsot, T. 2002. Flow forcing techniques for numerical simulation of combustion instabilities. Combustion and Flame 131, pp. 371–385.
 
9.
Khabbazian et al. 2022 – Khabbazian, G., Aminian, J. and Khoshkhoo, R.H. 2022. Experimental and numerical investigation of MILD combustion in a pilot-scale water heater. Energy 239(A), DOI: 10.1016/j.energy.2021.121888.
 
10.
Liu et al. 2022 – Liu, Y., He, X., Feng, L., Xue, R., Zhang, Y., Xu, C. and Du, J. 2022. Numerical simulation of the interaction between shock train and combustion in three-dimensional M12-02 scramjet model. International Journal of Hydrogen Energy 47(12), pp. 8026–8036, DOI: 10.1016/j.ijhydene.2021.12.126.
 
11.
Lu, W. and Chen, H. 2018. Design of cylindrical mixing chamber ejector according to performance analyses. Energy 164, pp. 594–601, DOI: 10.1016/j.energy.2018.09.025.
 
12.
Markovich et al. 2014 – Markovich D.M., Abdurakipov S.S., Chikishev L.M., Dulin V.M. and Hanjalić‚ K. 2014. Comparative analysis of lowand high-swirl confined flames and jets by proper orthogonal and dynamic mode decompositions. Physics of Fluids 26(6), DOI: 10.1063/1.4884915.
 
13.
Medeiros et al. 20122 – Medeiros, M.L.M.M., dos Santos, A. and Fernandes, E.C. 2022. Mathematical modelling and experimental study of an ejector burner. Experimental Thermal and Fluid Science 130, DOI: 10.1016/j.expthermflusci.2021.110482.
 
14.
Neven, K. 2021. Multiplying the Effect of Nitrogen Oxides Reduction Under Vortex Burner Conditions at Gas Fuel Injection. 6th International Symposium on Environment-Friendly Energies and Applications (EFEA), pp. 1–4, DOI: 10.1109/EFEA49713.2021.9406255.
 
15.
Ongar et al. 2022 – Ongar, B., Beloev, H., Iliev, I., Ibrasheva, A. and Yegzekova, A. 2022. Numerical simulation of nitrogen oxide formation in dust furnaces. EUREKA: Physics and Engineering 1, pp. 23–33, DOI: 10.21303/2461-4262.2022.002102.
 
16.
Penkova et al. 2020 – Penkova, N., Krumov, K., Mladenov, B. and Stoyanov, Y. 2020. Modelling and numerical simulation of the heat transfer and natural ventilation in storage halls. E3S Web of Conferences 207, DOI: 10.1051/e3sconf/202020701005.
 
17.
Ramos, J.I. 1981. A numerical study of turbulent swirling flows. Dept. of Mech. Eng., Carnegie-Mellon Univ., Pittsburgh, Pa.
 
18.
Sharaborin et al. 2016 – Sharaborin, D.K., Dulin, V.M., Lobasov, A.S. and Markovich, D.M. 2016. Measurements of density field in a swirling flame by 2D spontaneous Raman scattering. AIP Conference Proceedings 1770, 030027, DOI: 10.1063/1.4963969.
 
19.
Soundararajan et al. 2022 – Soundararajan, P.R., Durox, D., Renaud, A., Vignat, G. and Candel, S. 2022. Swirler effects on combustion instabilities analyzed with measured FDFs, injector impedances and damping rates. Combustion and Flame 238, DOI: 10.1016/j.combustflame.2021.111947.
 
20.
Wang et al. 2022 – Wang, Y., Zhang, X. and Li, Y. 2022. Numerical simulation of methane-hydrogen-air premixed combustion in turbulence. International Journal of Hydrogen Energy, DOI: 10.1016/j.ijhydene.2022.05.167.
 
21.
Xue et al. 2020 – Xue, R., Zheng, X., Yue, L., Zhang, S. and Weng, C. 2020. Study of shock train/flame interaction and skin-friction reduction by hydrogen combustion in compressible boundary layer. International Journal of Hydrogen Energy 45(31), pp. 15683–15696, DOI: 10.1016/j.ijhydene.2020.04.027.
 
22.
Yeh et al. 2013 –Yeh, C.L., Hwang, P.W., Chen, W.K. and Li, J.Y. 2013. Modelling evaluation of Arrhenius factor and thermal conductivity for combustion synthesis of transition metal aluminides. Intermetallic 39, pp. 20–24, DOI: 10.1016/j.intermet.2013.03.021.
 
eISSN:2720-569X
ISSN:1429-6675
Journals System - logo
Scroll to top