Economic and environmental dimensions of energy production with the use of renewable technologies
More details
Hide details
Izmail State of University of Humanities, Ukraine
Vinnytsia National Technical University, Ukraine
Ternopil Ivan Puluj National University, Ukraine
Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Poland
National Pirogov Memorial Medical University, Ukraine
Odessa National Economic University, Ukraine
Submission date: 2023-01-24
Final revision date: 2023-02-17
Acceptance date: 2023-02-17
Publication date: 2023-03-23
Corresponding author
Piotr Olczak   

Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Poland
Polityka Energetyczna – Energy Policy Journal 2023;26(1):5–22
Accelerating the transition of the energy sector to ecologically clean energetics using renewable energy technologies will ensure the security of the energy sector of the European Union based on highly energy-efficient and cost-effective technologies for generating heat and electricity. The aim of the study is to assess the economic and ecological aspects of the implementation of renewable energy technologies in Ukraine based on the analysis of trends in the transformation of both the global and the European energy sector. The approach proposed in this article makes it possible to reasonably determine the prospects for the use of environmentally safe energy-saving technologies using renewable energy sources. The analysis of the economic and environmental aspects of energy production based on renewable energy technologies, the condition of development and directions of transformation of the European energy sector is illustrated on the basis of a comprehensive assessment of the efficiency of the use of energy- and resource-saving, environmentally safe and cost-effective innovative technologies of non-traditional and renewable energy sources. This is achieved through the use of a comprehensive generalized dimensionless criterion of energy-ecological-economic efficiency of innovative technologies with the aim of increasing the level of energy-economic efficiency and environmental safety of the energy sector. According to this approach, it is determined that the effective integration of a certain energy- and resource-saving, environmentally safe and economically efficient innovative technology using renewable sources in Ukraine is possible.
Wymiar ekonomiczny i środowiskowy produkcji energii przy zastosowaniu odnawialnych technologii
odnawialne źródła energii, bezpieczeństwo energetyczne, sektor energetyczny, aspekty ekonomiczne i środowiskowe
Przyspieszenie przejścia sektora energetycznego do ekologicznie czystej energetyki za pomocą technologii energii odnawialnej zapewni bezpieczeństwo sektora energetycznego Unii Europejskiej w oparciu o wysoce energooszczędne i opłacalne technologie generowania ciepła i energii elektrycznej. Celem badania jest ocena ekonomicznych i ekologicznych aspektów wdrażania technologii energii odnawialnej na Ukrainie na podstawie analizy trendów w transformacji zarówno globalnego, jak i europejskiego sektora energetycznego. Podejście zaproponowane w tym artykule umożliwia rozsądne określenie perspektyw stosowania bezpiecznych technologii oszczędzania energii dla środowiska z wykorzystaniem odnawialnych źródeł energii. Analiza ekonomicznych i środowiskowych aspektów produkcji energii w oparciu o technologie energii odnawialnej, warunek rozwoju i kierunki transformacji europejskiego sektora energetycznego są zilustrowane na podstawie kompleksowej oceny wydajności wykorzystania energii i zasobów. Osiąga się to poprzez zastosowanie kompleksowego uogólnionego bezwymiarowego kryterium wydajności energetyczno-ekonomicznej innowacyjnych technologii w celu zwiększenia poziomu wydajności energetyczno-ekonomicznej i bezpieczeństwa środowiska sektora energetycznego. Zgodnie z tym podejściem ustalono, że możliwa jest skuteczna integracja pewnej ilości energii i zasobów, bezpiecznych dla środowiska i ekonomicznie wydajnych technologii z wykorzystaniem źródeł odnawialnych na Ukrainie.
Dyczko et al. 2021 – Dyczko, A., Kamiński, P., Stecuła, K., Prostański, D., Kopacz, M. and Kowol, D. 2021. Thermal and mechanical energy storage as a chance for energy transformation in Poland. Polityka Energetyczna – Energy Policy Journal 24(3), pp. 43–60, DOI: 10.33223/epj/141867.
European Centre for Medium-Range Weather Forecasts (ECMWF) 2019. “ERA5.” Reanalysis Datasets. 2019, DOI: 10.24381/cds.adbb2d47.
EC 2021 – European Commission 2021. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions ‘Fit for 55’: Delivering the EU’s 2030 Climate Target on the Way to Climate Neutrality 2021.
EEA 2022 – European Environment Agency 2022. Energy.
European Union 2018. Directive (EU) 2018/410 of the European Parliament and of the Council of 14 March 2018 Amending Directive 2003/87/EC to Enhance Cost-Effective Emission Reductions and Low-Carbon Investments, and Decision (EU) 2015/1814 (Text with EEA Relevance) 2018.
Gołdasz et al. 2022 – Gołdasz, A., Matuszewska, D. and Olczak, P. 2022. Technical, economic, and environmental analyses of the modernization of a chamber furnace operating on natural gas or hydrogen. International Journal of Hydrogen Energy 47(27), pp. 13213–13225, DOI: 10.1016/j.ijhydene.2022.02.090.
Idzikowski, A. and Cierlicki, T. 2021. Economy and energy analysis in the operation of renewable energy installations – a case study. Production Engineering Archives 27(2), pp. 90–99, DOI: 10.30657/pea.2021.27.11.
IEA 2022a – International Energy Agency 2022a. “GHG Emissions from Energy” 2022.
IEA 2022b – International Energy Agency 2022b. “Renewable Energy” 2022.
IRENA 2022a. Renewable Capacity Statistics 2022. IRENA 2022. [Online] https://irena.org/-/media/File... [Accessed: 2022-11-15].
IRENA 2022b. World Energy Transitions Outlook 2022: 1.5°C Pathway 2022.
Komorowska et al. 2022 – Komorowska, A., Olczak, P., Hanc, E. and Kamiński, K. 2022. An analysis of the competitiveness of hydrogen storage and Li-ion batteries based on price arbitrage in the day-ahead market. International Journal of Hydrogen Energy 47(66), pp. 28556–28572, DOI: 10.1016/j.ijhydene.2022.06.160.
Koval et al. 2022 – Koval, V., Borodina, O., Lomachynska, I., Olczak, P., Mumladze, A. and Matuszewska, D. 2022. Model Analysis of Eco-Innovation for National Decarbonisation Transition in Integrated European Energy System. Energies 15(9), DOI: 10.3390/en15093306.
Koval et al. 2021 – Koval, V., Sribna, Y., Kaczmarzewski, S., Shapovalova, A. and Stupnytskyi, V. 2021. Regulatory policy of renewable energy sources in the European national economies. Polityka Energetyczna – Energy Policy Journal 24(3), pp. 61–78, DOI: 10.33223/epj/141990.
Kulpa et al. 2021 – Kulpa, J., Kamiński, P., Stecuła, K., Prostański, D., Matusiak, P., Kowol, D., Kopacz, M. and Olczak, P. 2021. Technical and Economic Aspects of Electric Energy Storage in a Mine Shaft—Budryk Case Study. Energies 14(21), DOI: 10.3390/en14217337.
Kulpa et al. 2022 – Kulpa, J., Olczak, P., Stecuła, K. and Sołtysik, M. 2022. The Impact of RES Development in Poland on the Change of the Energy Generation Profile and Reduction of CO2 Emissions. Applied Sciences 12(21), DOI: 10.3390/app122111064.
Olczak et al. 2022 – Olczak, P., Żelazna, A., Stecuła, K., Matuszewska, D. and Lelek, Ł. 2022. Environmental and economic analyses of different size photovoltaic installation in Poland. Energy for Sustainable Development 70 (October), pp. 160–169, DOI: 10.1016/j.esd.2022.07.016.
Ostapenko et al. 2020 – Ostapenko, O., Savina, N., Mamatova, L., Zienina-Bilichenko, A. and Selezneva, O. 2020. Perspectives of Application of Innovative Resource-Saving Technologies in the Concepts of Green Logistics and Sustainable Development. Turismo: Estudos &Práticas 2, pp. 1–12.
Ostapenko et al. 2022 – Ostapenko, O., Olczak, P., Koval, V., Hren, L., Matuszewska, D. and Postupna, O. 2022. Application of Geoinformation Systems for Assessment of Effective Integration of Renewable Energy Technologies in the Energy Sector of Ukraine. Applied Sciences 12(2), DOI: 10.3390/app12020592.
Sołtysik et al. 2022 – Sołtysik, M., Mucha-Kuś, K. and Kamiński, J. 2022. The New Model of Energy Cluster Management and Functioning. Energies 15(18), DOI: 10.3390/en15186748.
Staffell, I. and Pfenninger, S. 2016. Using bias-corrected reanalysis to simulate current and future wind power output. Energy 114, pp. 1224–1239, DOI: 10.1016/j.energy.2016.08.068.
Stecuła, K. and Tutak, M. 2018. Causes and Effects of Low-Stack Emission in Selected Regions of Poland. [In:] International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM 18, pp. 357–364, DOI: 10.5593/sgem2018/4.2/S19.047.
Tagliapietra et al. 2019 – Tagliapietra, S., Zachmann, G., Edenhofer, O., Glachant, J.-M., Linares, P. and Loeschel, A. 2019. The European union energy transition: Key priorities for the next five years. Energy Policy 132, pp. 950–954, DOI: 10.1016/j.enpol.2019.06.060.
U.S. Environmental Protection Agency 2022. Energy and the Environment 2022.
Zamasz et al. 2021 – Zamasz, K., Stęchły, J., Komorowska, A. and Kaszyński, P. 2021. The Impact of Fleet Electrification on Carbon Emissions: A Case Study from Poland. Energies 14(20), DOI: 10.3390/en14206595.