ORIGINAL PAPER
Development of an algorithm for power supply to a livestock farm using biogas
 
More details
Hide details
1
Engineering and Technology Faculty, Vinnytsia National Agrarian University, Ukraine
 
 
Submission date: 2025-06-22
 
 
Final revision date: 2025-07-20
 
 
Acceptance date: 2025-07-21
 
 
Publication date: 2025-12-19
 
 
Corresponding author
Ihor Kupchuk   

Engineering and Technology Faculty, Vinnytsia National Agrarian University, Ukraine
 
 
Polityka Energetyczna – Energy Policy Journal 2025;28(4):61-86
 
KEYWORDS
TOPICS
ABSTRACT
The article examines the enhancement of energy autonomy for livestock farms through the implementation of power supply systems based on renewable energy sources – specifically, biogas plants and solar generation. A comprehensive methodology is proposed for assessing the energy potential of agricultural organic waste, including manure, manure effluents, and feed residues. The assessment takes into account the chemical composition, moisture content, and total volume of raw materials, enabling accurate estimation of biogas output through anaerobic digestion. Analytical models are presented to calculate the potential electrical and thermal energy output per cubic meter of biogas, considering the efficiency and technical characteristics of the generator set. The farm’s energy consumption profile was developed, including a detailed daily load schedule, peak demand, and average daily usage. Based on this analysis, the optimal capacity of the biogas plant and the required area of photovoltaic panels were calculated to ensure full coverage of the farm’s energy needs. Scenarios for seasonal generation adjustment are discussed, as well as the possibility of connecting to the external power grid in case of electricity surplus. The scientific result of the study is the development of a scalable and adaptable algorithm for designing autonomous energy supply systems for livestock farms, based on balancing biogas production with electricity consumption. The proposed solution enhances the energy resilience and sustainability of the agricultural sector.
FUNDING
This research was supported and funded by the Ministry of Education and Science of Ukraine under grant No. 0125U000363
CONFLICT OF INTEREST
The Authors have no conflicts of interest to declare
METADATA IN OTHER LANGUAGES:
Polish
Opracowanie algorytmu zasilania fermy hodowlanej przy użyciu biogazu
elektrownie kogeneracyjne, harmonogram obciążenia, generator, energia cieplna, efektywność energetyczna
W artykule rozważana jest kwestia zwiększenia autonomii energetycznej gospodarstw hodowlanych poprzez wdrożenie systemów zasilania opartych na odnawialnych źródłach energii, w szczególności biogazowniach i elektrowniach słonecznych. Zaproponowano kompleksowe podejście do oceny potencjału wytwarzania energii elektrycznej i ciepła, oparte na ilościowej analizie organicznych odpadów rolniczych, które mogą być przetwarzane na biogaz poprzez fermentację beztlenową. Pod uwagę brane są: całkowita objętość obornika, ścieków obornikowych, odpadów paszowych, a także skład chemiczny i wilgotność surowca. W artykule przedstawiono zależności analityczne, w szczególności równania do określania energii elektrycznej i cieplnej, jaką można uzyskać z jednego metra sześciennego biogazu, biorąc pod uwagę parametry technologiczne zespołu prądotwórczego. Ponadto w pracy przeanalizowano zapotrzebowanie energetyczne gospodarstwa, zbudowano dzienny harmonogram obciążeń, określono ilość zużywanej energii elektrycznej, jej wartości szczytowe i średnie dzienne zużycie. Na podstawie tych danych obliczono optymalną wydajność biogazowni i powierzchnię paneli słonecznych niezbędną do pełnego pokrycia potrzeb energetycznych. Rozważono warianty sezonowej regulacji wytwarzania, a także możliwość podłączenia do sieci zewnętrznej w przypadku nadwyżki produkcji energii elektrycznej. Proponowany system zasilania może być skalowany i dostosowywany do warunków konkretnego gospodarstwa, co czyni go uniwersalnym rozwiązaniem dla zwiększenia bezpieczeństwa energetycznego w sektorze rolnym.
REFERENCES (23)
1.
Alengebawy et al. 2024 – Alengebawy, A., Ran, Y., Osman, A.I., Jin, K., Samer, M. and Ai, P. 2024. Anaerobic digestion of agricultural waste for biogas production and sustainable bioenergy recovery: a review. Environmental Chemistry Letters 22, pp. 2641–2668, DOI: 10.1007/s10311-024-01789-1.
 
2.
Alhijazi et al. 2024 – Alhijazi, A.A.K., Alloush, A.F. and Almasri, R.A. 2024. Evaluating a Solar–Biogas Hybrid Renewable Power Plant by Heating the Anaerobic Digester Using the Rejected Heat of Rankine Cycle in Idlib, Syria. Applied Sciences 14(24), DOI: 10.3390/app142412027.
 
3.
Galushchak et al. 2023 – Galushchak, O., Burlaka, S., Kupchuk, I., Bondarenko, V. and Gontaruk, Y. 2023. Environmental indicators of the operation of a diesel generator running on a mixture of biofuels. Polityka Energetyczna – Energy Policy Journal 26(4), pp. 195–208, DOI: 10.33223/epj/170759.
 
4.
Honcharuk et al. 2024 – Honcharuk, I., Tokarchuk, D., Gontaruk, Y. and Kolomiiets, T. 2024. Production and Use of Biogas and Biomethane from Waste for Climate Neutrality and Development of Green Economy. Journal of Ecological Engineering 25(2), pp. 20–32, DOI: 10.12911/22998993/175876.
 
5.
Hontaruk et al. 2024 – Hontaruk,Y., Furman, I., Bondarenko, V., Riabchyk, A. and Nepochatenko O. 2024. Production of biogas and digestate at sugar factories as a way of ensuring the energy and food security of Ukraine. Polityka Energetyczna – Energy Policy Journal 27(2), pp. 195–210, DOI: 10.33223/epj/185210.
 
6.
Kaletnik, G. 2010 – Biofuels. Food, energy and economic security of Ukraine. Hi-Tech Press. 516.
 
7.
Kaletnik, H. and Yaropud, V. 2023. Research of pressure losses and justification of forms of side-evaporative heat exchangers channels in livestock premises. Przegląd Elektrotechniczny 99(7), pp. 247–252, DOI: 10.15199/48.2023.07.46.
 
8.
Kaletnik et al. 2019 – Kaletnik, H., Pryshliak, V. and Pryshliak, N. 2019. Public policy and biofuels: Energy, environment and food trilemma. Journal of Environmental Management and Tourismc 10(3), pp. 479–487, DOI: 10.14505/jemt.v10.3(35).01.
 
9.
Kaletnik et al. 2021 – Kaletnik, H., Pryshliak, N. and Tokarchuk, D. 2021. Potential of production of energy crops in Ukraine and their processing on solid biofuels. Ecological Engineering and Environmental Technology 22(3), pp. 59–70, DOI: 10.12912/27197050/135447.
 
10.
Kaletnik et al. 2022 – Kaletnik, H., Pryshliak, N., Khvesyk, M. and Khvesyk, J. 2022. Legal regulations of biofuel production in Ukraine. Polityka Energetyczna – Energy Policy Journal 25(1), pp. 125–142, DOI: 10.33223/epj/146411.
 
11.
Kaletnik et al. 2017 – Kaletnik, H., Pilvere, I., Nikolaenko, S. and Bulgakov, V. 2017. Investigation of biofuel production possibilities for stabilisation of agro-industrial complex of Ukraine. Engineering For Rural Development, Jelgava, 24–26.05.2017, pp. 1250–1256, DOI: 10.22616/ERDev2017.16. N273.
 
12.
Kaletnik et al. 2020 – Kaletnik, Н., Mazur, V., Gunko, І., Ryaboshapka, V., Bulgakov, Olt, J., Raide, V. and Lives, R. 2020. Study on performance of compression engine operated by biodiesel fuel. Agronomy Research 5, pp. 862–887, DOI: 10.15159/AR.20.027.
 
13.
Koval et al. 2025 – Koval, V., Atstaja, D., Filipishyna, L., Udovychenko, V., Kryshtal, H. and Gontaruk, Y. 2025. Sustainability Assessment and Resource Utilization of Agro-Processing Waste in Biogas Energy Production. Climate 13(5), DOI: 10.3390/cli13050099.
 
14.
Kubon et al. 2024 – Kubon, M., Skibko, Z., Borusiewicz, A., Romaniuk, W., Gajda, J.S., Kłosowska, O. and Wasąg, Z. 2024. Influence of the Parameters of an Agricultural Biogas Plant on the Amount of Power Generated. Applied Sciences 14(10), DOI: 10.3390/app14104200.
 
15.
Kupchuk et al. 2022 – Kupchuk, I., Burlaka, S., Galushchak, A., Yemchyk, T., Galushchak, D., Prysiazhniuk, Y. 2022. Research of autonomous generator indicators with the dynamically changing component of a two-fuel mixture. Polityka Energetyczna – Energy Policy Journal 25(2), pp. 147–162, DOI: 10.33223/epj/150746.
 
16.
Lut et al. 2008 – Lut, M.T., Miroshnyk, O.V. and Trunova, I.M. 2008. Fundamentals of technical operation of power equipment of the agricultural complex: Textbook for university students. Kharkiv: Fact, 438 p.
 
17.
Power Link cogeneration plants, mini CHP. “UKRENERGOBUDSERVIS” LLC – contacts, products, services, prices. [Online:] https://ua-energy.kiev.ua/ua/g... [Accessed: 2025-04-12].
 
18.
Rahman et al. 2024 – Rahman, I., Suha, F. and Ahmed, A. 2024. Optimal Sizing of Hybrid Renewable Energy Based Microgrid System. Electrical Engineering and Systems Science, DOI: 10.48550/arXiv.2403.01602.
 
19.
Stadnik, M. 2018. – Optimization of the composition of the livestock farm’s autonomous energy supply generating equipment using biogas. Engineering, energy, transport AIC 2(101), pp. 81–88.
 
20.
Stadnik et al. 2021 – Stadnik, M., Shtuts, A. and Pylypenko, O. 2021. Level of energy supply of animal farms from using biogas.  Engineering, energy, transport AIC 1(112), pp. 100–112, DOI: 10.37128/2520-6168-2021-1-12.
 
21.
Stadnik et al. 2025 – Stadnik, M., Shtuts, A., Kolisnyk, M. and Hryhorenko, N. 2025. Application of intelligent systems to increase the reliability and efficiency of the operation of electric power networks. Bulletin of Khmelnytsky National University. Series: Technical Sciences 1(347), pp. 291–299, DOI: 10.31891/2307-5732-2025-347-38.
 
22.
Yang et al. 2024 – Yang, B., Jia, W., Yu, Y. and Zhang, H. 2024. Sustainability Assessment of Agricultural Waste Biogas Production System in China Based on Emergy and Carbon Evaluation Methods. Agriculture 14(11), DOI: 10.3390/agriculture14111912.
 
23.
Yang et al. 2025 – Yang, Z., Li, H,., Fu, B., Xue, B. and Rotter, V.S. 2025. Mapping the potential of biogas production for electricity generation from agricultural crop residues at the town scale in China. Environment, Development and Sustainability, DOI: 10.1007/s10668-025-06470-3.
 
eISSN:2720-569X
ISSN:1429-6675
Journals System - logo
Scroll to top