Emergy-based indicators to measure circularity:
promises and problems
More details
Hide details
1
Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, L-L-4422 Belvaux, Luxembourg
2
Department of Science and Technology, Parthenope University of Naples, Italy
Publication date: 2018-12-31
Polityka Energetyczna – Energy Policy Journal 2018;21(4):179-196
KEYWORDS
ABSTRACT
In the constant pursue of the sustainability of socio-industrial systems, the definition of useful,
reliable and informative, and at the same time simple and transparent, indicators is an important
step for the evaluation of the circularity of the assessed systems. In the circular economy (CE)
context, scientific literature has already identified the lack of overarching indicators (social, urban,
prevention-oriented, etc.), pointing out that mono-dimensional indicators are not able to grasp the
complexity of the systemic, closed-loop, feedback features of CE. In this respect, Emergy accounting is one of the approaches that have been identified as holding the potential to capture both
resource generation and product delivery dimensions and therefore to provide an enhanced systems’
evaluation in a CE perspective.
Because of Emergy’s intrinsic definition and its calculation structure, Emergy-based indicators conceptually lend themselves very well to the evaluation and monitoring of circular processes. Additionally, Emergy has the unique feature of enabling the evaluation of systems that are not necessarily
only technosphere systems, but also of technological systems which embed nature (techno-ecological systems).
The present paper gives a perspective on a set of Emergy-based indicators that we have identified
as suitable to evaluate circular systems, and outlines the different perspective compared to the circularity indicators defined in the “Circularity Indicators Project” launched by the Ellen MacArthur Foundation.
METADATA IN OTHER LANGUAGES:
Polish
Wskaźniki Emergy do pomiaru obiegu zamkniętego:
obietnice i problemy
wskaźnik Emergy, gospodarka obiegu zamkniętego, promowanie gospodarki o obiegu zamkniętym
W ciągłym dążeniu do zrównoważenia systemów społeczno-przemysłowych definicja użytecznych,
wiarygodnych i informacyjnych, a jednocześnie prostych i przejrzystych wskaźników jest ważnym krokiem w ocenie obiegu zamkniętego ocenianych systemów. W kontekście gospodarki o obiegu zamkniętym, literatura naukowa zidentyfikowała już brak nadrzędnych wskaźników (społecznych, miejskich, zorientowanych na zapobieganie itd.), wskazując, że wskaźniki jednowymiarowe nie są w stanie uchwycić
złożoności systemu, close-loop, funkcji sprzężenia zwrotnego gospodarki o obiegu zamkniętym. Pod tym
względem rachunkowość Emergy jest jednym z podejść, które zostały zidentyfikowane jako posiadające
potencjał do uwzględnienia zarówno zasoby, jak i produkty, co pozwala na ocenę systemu w perspektywie
gospodarki o obiegu zamkniętym.
Ze względu na definicję Emergy i jej strukturę obliczeniową, wskaźniki oparte na Emergy bardzo dobrze nadają się do oceny i monitorowania procesów o zamkniętych pętlach. Dodatkowo Emergy ma unikalną cechę umożliwiającą ocenę systemów, które niekoniecznie są tylko systemami technosfery, ale także
systemami technologicznymi, które biorą pod uwagę naturę (systemy techniczno-ekologiczne). W niniejszym artykule przedstawiono propozycję zestawu wskaźników Emergy, które zostały zidentyfikowane jako odpowiednie do oceny systemów zamkniętych, i nakreślono inną perspektywę w porównaniu ze wskaźnikami zdefiniowanymi w zakresie obiegu zamkniętego przez Ellen MacArthur Foundation w Circulariity Indicators Project.
REFERENCES (61)
1.
Abel, T. 2013. Emergy evaluation of DNA and culture in ‘information cycles’. Ecological Modelling 251, pp. 85– 98.
2.
Amponsah et al. 2011 – Amponsah, N.Y., Le Corre, O. and Lacarriere, B. 2011. Recycling flows in emergy evaluation: A mathematical paradox? Ecological Modelling 222, pp. 3071–3081.
3.
Arbault et al. 2013 – Arbault, D., Rugani, B., Marvuglia, A., Tiruta-Barna, L. and Benetto, E. 2013. Accounting for the Emergy Value of Life Cycle Inventory Systems: Insights from Recent Methodological Advances. Journal of Environmental Accounting and Management 1(2), pp. 103–117.
4.
Arbault et al. 2014 – Arbault, D., Rugani, B., Marvuglia, A., Benetto, E. and Tiruta-Barna, L. 2014. Emergy evaluation using the calculation software SCALE: case study, added value and potential improvements. Science of the Total Environment 472, pp. 608–619.
5.
Ardente, F. and Mathieux, F. 2014. Identification and assessment of product’smeasures to improve resource efficiency: the case-study of an energy using product. Journal of Cleaner Production 83, pp. 126–141.
6.
Bakshi et al. 2015 – Bakshi, B.R., Ziv, G. and Lepech, M.D. 2015. Techno-Ecological Synergy: A Framework for Sustainable Engineering. Environmental Science & Technology 49, pp. 1752−1760.
7.
Benyus, J.M. 2002. Biomimicry. Harper Perennial, New York.
8.
Bocken et al. 2016 – Bocken, N.M.P., de Pauw, I., Bakker C. and van der Grinten, B. 2016. Product design and business model strategies for a circular economy. Journal of Industrial and Production Engineering 33(5), pp. 308–320.
9.
Brown, M.T. and Buranakarn, V. 2003. Emergy indices and ratios for sustainable material cycles and recycle options. Resources, Conservation and Recycling 38, pp. 1–22.
10.
Brown at al. 2011 – Brown, M.T., Protano, G. and Ulgiati, S., 2011. Assessing geobiosphere work of generatingglobal reserves of coal, crude oil, and natural gas. Ecological Modelling 222(3), pp. 879–887.
11.
Brown, M.T. and Ulgiati, S. 1997. Emergy-based indices and ratios to evaluate sustainability: monitoring economies and technology toward environmentally sound innovation. Ecological Engineering 9, pp. 51–69.
12.
Brown, M.T. and Ulgiati, S. 2016a. Assessing the global environmental sources driving the geobiosphere: A revised emergy baseline. Ecological Modelling 339, pp. 126–132.
13.
Brown, M.T. and Ulgiati, S. 2016b. Emergy assessment of global renewable sources. Ecological Modelling 339, pp. 148–156.
14.
Cohen et al. 2007 – Cohen, M.J., Sweeney, S. and Brown, M.T. 2007. Computing the unit emergy value of crustal elements. [In:] Brown, et al. (Eds.), Emergy Synthesis 4 Center for Environmental. PolicyUniversity of Florida, Gainesville, FL (USA).
15.
Commoner, B. 1971. The Closing Circle: Nature, Man, and Technology. Knopf, New York.
16.
EC (European Commission) 2014. Towards a Circular Economy: A Zero WasteProgramme for Europe. EC (European Commission), Brussels.
17.
EC (European Commission) 2015. Closing the Loop – An EU Action Plan for theCircular Economy. Swiss Centre for Life Cycle Inventories, 2010, Brusselswww.ecoinvent.org.
18.
Geissdoerfer et al. 2018 – Geissdoerfer, M., Morioka, S.N., Monteiro de Carvalho, M. and Evans, S. 2018. Business models and supply chains for the circular economy. Journal of Cleaner Production 190, pp. 712–721.
19.
Geng et al. 2012 – Geng, Y., Fu, J., Sarkis, J. and Xue, B. 2012. Towards a national circular economy indicator system in China: an evaluation and critical analysis. Journal of Cleaner Production 23, pp. 216–224.
20.
Geng et al. 2013 – Geng,Y., Sarkis, J., Ulgiati, S. and Zhang, P. 2013. Measuring China’s Circular Economy. Science, pp. 1526–1527.
21.
Ghisellini et al. 2016 – Ghisellini, P., Cialani, C. and Ulgiati, S. 2016. A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems. Journal of Cleaner Production 114, pp. 11–32.
22.
Ghisellini et al. 2018 – Ghisellini, P., Ripa, M. and Ulgiati, S. 2018. Exploring environmental and economic costs and benefits of a circular economy approach to the construction and demolition sector. A literature review. Journal of Cleaner Production 178, pp. 618–643.
23.
Graedel, T.E. and Allenby, Braden R. 1995. Industrial Ecology. Prentice Hall, Englewood Cliffs, N.J.
24.
Hau, J.L. and Bakshi, B.R. 2004. Promise and problems of emergy analysis. Ecological Modelling 178, pp. 215–225.
25.
Hawken et al. 1999 – Hawken, P., Lovins, A. and Lovins, L.H. 1999. Natural Capitalism: Creating the Next Industrial Revolution. 1st Edition, 378 pp. Little, Brown and Company. ISBN: 978-0316353007.
26.
Hudson, A. and Tilley, D.R., 2014. Assessment of uncertainty in emergy evaluations using Monte Carlo simulations. Ecological Modelling 271, pp. 52–61.
27.
Huysman et al. 2015 – Huysman, S., Debaveye, S., Schaubroeck, T., De Meester, S., Ardente, F., Mathieux, F. and Dewulf, J. 2015. Application and further development of the recyclability benefit rateindicator for closed-loop and open-loop systems: a case study on plasticrecycling in Flanders. Resources, Conservation and Recycling 101, pp. 53–60. Ingwersen, W.W. 2010. Uncertainty characterization for emergy values. Ecological Modelling 221, pp. 445–452.
28.
Ingwersen, W.W. 2011. Emergy as a Life Cycle Impact Assessment Indicator – A Gold Mining Case Study. Journal of Industrial Ecology 15(4), pp. 550–567.
29.
Keena et al. 2018 – Keena, N., Raugei, M., Etman, M.A., Ruan, D. and Dyson, A. 2018. Clark’s Crow: A design plugin to support emergy analysis decisionmaking towards sustainable urban ecologies. Ecological Modelling 367, pp. 42–57.
30.
Le Corre, O. and Truffet, L. 2015. Emergy paths computation from interconnected energy system diagram. Ecological Modelling 313, pp. 181–200.
31.
Li et al. 2011 – Li, L., Lu, H., Campbell, D.E. and Ren, H. 2011. Methods for estimating the uncertainty in emergy table-form models. Ecological Modelling 222(15), pp. 2615–2622.
32.
Lifset, R. and Graedel, T. 2002. Industrial ecology: Goals and definitions, Chapter 2. [In:] Handbook of industrial ecology, ed. R.U. Ayres, and L. Ayres. Cheltenham: Edward Elgar Publishers.
33.
Liu, X. and Bakshi, B.R. 2018. Ecosystem Services in LCA while Encouraging Techno-Ecological Synergies. Journal of Industrial Ecology. DOI: 10.1111/jiec.12755.
34.
Liu et al. 2018a – Liu, X., Ziv, G. and Bakshi, B.R. 2018a. Ecosystem services in life cycle assessment – Part 1: A computational framework. Journal of Cleaner Production 197, pp. 314–322.
35.
Liu et al. 2018b – Liu, X., Ziv, G. and Bakshi, B.R. 2018b. Ecosystem services in life cycle assessment – Part 2: Adaptations to regional and serviceshed information. Journal of Cleaner Production 197, pp. 772–780.
36.
Lyle, J.T. 1994. Regenerative Design for Sustainable Development. John Wiley & Sons, New York.
37.
MacArthur Foundation & Granta Design, 2015. Circularity indicators – An approach to measuring circularity - Methodology, 98pp. URL. [Online]
https://www.ellenmacarthurfoun... insight/Circularity-Indicators_Methodology_May2015.pdf. [Accessed: 2018-08].
38.
Marvuglia et al. 2011 – Marvuglia, A., Benetto, E., Rugani, B. and Rios, G. 2011. A scalable implementation of the backtracking algorithm for Emergy calculation with Life Cycle Inventory databases. [In:] W. Pillman et al. (Eds), Proceedings of the 25th International Conference on Environmental Informatics (EnviroInfo 2011), October 5–7, 2011, Ispra, Italy, Vol. 2, pp. 755–764, Shaker Verlag, Aachen (Germany).
39.
Marvuglia et al. 2013 – Marvuglia, A., Benetto, E., Rios, G. and Rugani, B. 2013. SCALE: Software for CALculating Emergy based on life cycle inventories. Ecological Modelling 248(1), pp. 80–91.
40.
McDonough, W. and Braungart, M. 2002. Cradle to Cradle: Remaking the Way We Make Things. North Point Press, New York.
41.
Naveh, Z. 1982. Landscape Ecology as an Emerging Branch of Human Ecosystem Science. [In:] Macfadyen, A., Ford, E.D. (Eds.), Advances in Ecological Research. Academic Press, pp. 189–237.
42.
Naveh, Z. 2000. The Total Human Ecosystem: Integrating Ecology and Economics. BioScience 50 (4), pp. 357–361.
43.
Nimmanterdwong et al. 2018 – Nimmanterdwong, P., Chalermsinsuwan, B. and Piumsomboon, P. 2018. Development of an emergy computation algorithm for complex systems using depth first search and track summing methods. Journal of Cleaner Production 193, pp. 625–641.
44.
Odum, H.T. 1986. Emergy in Ecosystems/Poluin N. Ecosystem Theory and Application. John Wiley&Sons, New York, pp. 227–369.
45.
Odum, H.T. 1996. Environmental Accounting: Emergy and Environmental Decision Making. John Wiley & Sons, New York.
46.
Pauli, G.A. 2010. The Blue Economy: 10 Years, 100 Innovations, 100 Million Jobs. Paradigm Publications, Taos, NM.
47.
Raugei et al. 2014 – Raugei, M., Rugani, B., Benetto, E. and Ingwersen, W.W. 2014. Integrating emergy into LCA: Potential added value and lingering obstacles. Ecological Modelling 271, pp. 4–9.
48.
Reza et al. 2013 – Reza, B., Sadiq, R. and Hewage, K. 2013. A fuzzy-based approach for characterization of uncertainties in emergy synthesis: an example of paved road system. Journal of Cleaner Production 59, pp. 99–110.
49.
Reza et al. 2014 – Reza, B., Sadiq, R. and Hewage, K. 2014. Emergy-based life cycle assessment (Em-LCA)of multi-unit and single-family residential buildings in Canada. International Journal of Sustainable Built Environment 3(2), pp. 207–224.
50.
Rugani, B. and Benetto, E. 2012. Improvements to Emergy Evaluations by Using Life Cycle Assessment. Environmental Science & Technology 46, pp. 4701–4712.
51.
Rugani et al. 2013 – Rugani, B., Benetto, E., Tiruta-Barna, L., Ingwersen, W.W., Marvuglia, A. and Arbault, D. 2013. Dealing with Emergy Algebra in the Life Cycle Assessment framework. [In:].
52.
M. Brown et al. (Eds), Emergy Synthesis 7: Theory and Applications of the Emergy Methodology; Proceedings of the 7th Biennial Emergy Conference, Gainesville (Florida, USA), January 12–14, 2012.
53.
Saladini et al. 2018 – Saladini, F., Gopalakrishnan, V., Bastianoni, S. and Bakshi, B.R. 2018. Synergies between industry and nature – An emergy evaluation of a biodiesel production system integrated with ecological systems. Ecosystem Services 30, pp. 257–266.
54.
Santagata et al. 2017 – Santagata, R., Ripa, M., Viglia, S. and Ulgiati, S. 2017. Emergy Accounting Evaluation of Power Generation from Animal By-Products. [In:] M. Brown et al. (Eds), Emergy Synthesis 9: Theory and Applications of the Emergy Methodology, Proceedings of the 9th Biennial Emergy Conference, Gainesville (Florida, USA), January 7–9, 2016.
55.
Santagata et al. 2018 – Santagata, R., Fiorentino, G., Zucaro, A., Ripa, M., Tian, X., Liu, G. and Ulgiati, S. 2018. Implementing a Circular Economy Framework within an emergy perspective. The case of Campania Region (Italy). Proceedings of the 10th Biennal Emergy Conference, Gainesville (Florida, USA), January 25–27, 2018.
56.
Stahel, W. 2010. The Performance Economy. Palgrave MacMillan, Basingstoke, New York.
57.
Tiruta-Barna, L. and Benetto, E. 2013. A conceptual framework and interpretation of emergy algebra. Ecological engineering 53, pp. 290–298.
58.
Ulgiati et al. 2007 – Ulgiati, S., Bargigli, S. and Raugei, M., 2007. An emergy evaluation of complexity, information and technology, towards maximum power and zero emissions. Journal of Cleaner Production 15, pp. 1359–1372.
59.
Ulgiati, S. and Brown, M., 2002. Quantifying the environmental support for dilutionand abatement of process emissions: the case of electricity production. Journal of Cleaner Production 10(4), pp. 335–348.
60.
Wang et al. 2015 – Wang, X., Dadouma, A., Chen, Y., Sui, P., Gao, W. and Jia, L. 2015. Sustainability evaluation of the large-scale pig farming system in North China: an emergy analysis based on life cycle assessment. Journal of Cleaner Production 102, pp. 144–164.
61.
Yi, H. and Braham, W.W. 2015. Uncertainty characterization of building emergy analysis (BEmA). Building and Environment 92, pp. 538–558.