ORIGINAL PAPER
Investigation of RES on a sustainable energy system
 
More details
Hide details
1
Korkyt Ata Kyzylorda University, Kazakhstan
 
2
National Research University “Tashkent Institute of Irrigation and Agricultural Mechanization Engineers Institute”, Uzbekistan
 
 
Submission date: 2025-04-16
 
 
Final revision date: 2025-06-05
 
 
Acceptance date: 2025-06-05
 
 
Publication date: 2025-09-30
 
 
Corresponding author
Gulnar Sydykova   

Korkyt Ata Kyzylorda University, Kazakhstan
 
 
Polityka Energetyczna – Energy Policy Journal 2025;28(3):99-126
 
KEYWORDS
TOPICS
ABSTRACT
This research focuses on investigating and improving technical solutions for utilizing evacuated tube heat collectors and solar concentrators to enhance heat transfer efficiency and adapt solar installations to integrate with existing fuel oil heating systems. The research methodology included the development of a mathematical model to describe heat transfer in evacuated tube heat collectors, the creation of an algorithm to calculate the system’s design parameters, and numerical modeling to assess temperature characteristics, efficiency, and the impact of key factors affecting the system. As a result of the study, the developed mathematical model made it possible to accurately describe the processes of heat transfer and the interaction of solar radiation with evacuated tube heat collectors and solar radiation concentrators, and to identify analytical dependencies linking the design parameters of the system (pipe diameter and module length) with heat engineering characteristics such as the temperature of the heat carrier and the efficiency of heat transfer. During the study, the relationship between the geometric parameters of the system, solar flux, reflection coefficient, and angular inaccuracy was investigated, which helped identify key factors affecting the efficiency of solar energy capture and the temperature distribution within the system. Numerical calculations have shown that increasing the system’s length and adjusting the diameter of the pipes significantly improved the efficiency of solar radiation and affected the coolant’s temperature. The paper also analysed the temperature characteristics, including the effect of the coolant flow rate and its distribution along the length of the tube heat collector. The calculation results showed that to optimize the system, it is necessary to consider the interaction of various parameters, including geometry and radiation characteristics, in order to maximise the efficiency of solar power plants. Additionally, the study confirmed the relationship between the receiver diameter and the concentration number, enabling a more accurate prediction of the system’s efficiency under various operating conditions. Thus, the results obtained can be used to optimize the design of solar thermal systems, improve their efficiency, and accurately calculate design parameters.
CONFLICT OF INTEREST
The Authors have no conflicts of interest to declare.
METADATA IN OTHER LANGUAGES:
Polish
Badanie odnawialnych źródeł energii w kontekście zrównoważonego systemu energetycznego
koncentrator promieniowania słonecznego, kolektor rurowy próżniowy, zużycie pary, parametry projektowe, systemy grzewcze, instalacje wysokotemperaturowe
W niniejszym artykule skoncentrowano się na analizie i doskonaleniu rozwiązań technicznych dotyczących wykorzystania kolektorów rurowych próżniowych oraz koncentratorów słonecznych w celu zwiększenia efektywności transferu ciepła oraz adaptacji instalacji słonecznych do pracy w istniejących systemach ogrzewania olejem opałowym. Metodologia badawcza obejmowała opracowanie modelu matematycznego opisującego transfer ciepła w kolektorach rurowych próżniowych, stworzenie algorytmu do obliczania parametrów projektowych systemu oraz modelowanie numeryczne służące ocenie charakterystyk temperaturowych, efektywności oraz wpływu kluczowych czynników oddziałujących na system. W wyniku badań przygotowany model matematyczny umożliwił precyzyjne opisanie procesów transferu ciepła oraz interakcji promieniowania słonecznego z kolektorami rurowymi próżniowymi i koncentratorami promieniowania słonecznego oraz identyfikację zależności analitycznych łączących parametry konstrukcyjne systemu (średnicę rur i długość modułu) z właściwościami cieplnymi, takimi jak temperatura nośnika ciepła oraz efektywność transferu ciepła. W trakcie badań zbadano zależności pomiędzy parametrami geometrycznymi systemu, strumieniem słonecznym, współczynnikiem odbicia oraz błędem kątowym, co pozwoliło zidentyfikować kluczowe czynniki wpływające na efektywność pozyskiwania energii słonecznej oraz rozkład temperatur wewnątrz systemu. Obliczenia numeryczne wykazały, że zwiększenie długości systemu oraz dostosowanie średnicy rur znacząco poprawiły efektywność absorpcji promieniowania słonecznego, a także wpłynęły na temperaturę czynnika chłodzącego. W pracy przeanalizowano także charakterystyki temperaturowe, w tym wpływ przepływu czynnika chłodzącego oraz jego rozkładu wzdłuż długości kolektora rurowego. Wyniki obliczeń wskazały, że do optymalizacji systemu konieczne jest uwzględnienie współdziałania różnych parametrów, w tym geometrii oraz właściwości promieniowania, w celu maksymalizacji efektywności instalacji solarnych. Dodatkowo w wyniku badań potwierdzono zależność pomiędzy średnicą odbiornika a liczbą koncentracji, co pozwoliło na dokładniejsze przewidywanie efektywności systemu w różnych warunkach eksploatacyjnych. Tym samym uzyskane wyniki mogą być wykorzystane do optymalizacji konstrukcji systemów solarno-termicznych, poprawy ich efektywności oraz precyzyjnego obliczania parametrów projektowych.
REFERENCES (46)
1.
Alfwzan et al. 2024 – Alfwzan, W.F., Alomani, G.A., Alessa, L.A. and Selim, M.M. 2024. Sensitivity analysis and design optimization of nanofluid heat transfer in a shell-and-tube heat exchanger for solar thermal energy systems: A statistical approach. Arabian Journal for Science and Engineering 49, pp. 9831–9847, DOI: 10.1007/s13369-023-08568-0.
 
2.
Anarbaev, A. and Koroly, M. 2021. Autonomous hybrid solar-heat pump for system heat-cooling in buildings. [In:] VII International Scientific Conference “Integration, Partnership and Innovation in Construction Science and Education”. Tashkent: IOP Publishing, DOI: 10.1088/1757-899X/1030/1/012178.
 
3.
Arasu, A.V. and Sornakumar, T. 2007. Design, manufacture and testing of fiberglass reinforced parabola trough for parabolic trough solar collectors. Solar Energy 81(10), pp. 1273–1279, DOI: 10.1016/j.solener.2007.01.005.
 
4.
Awais et al. 2021 – Awais, M., Ullah, N., Ahmad, J., Sikandar, F., Ehsan, M.M., Salehin, S., Bhuiyan, A.A. 2021. Heat transfer and pressure drop performance of nanofluid: A state-of-the-art review. International Journal of Thermofluids 9, DOI: 10.1016/j.ijft.2021.100065.
 
5.
Bagherian et al. 2020 – Bagherian, M.A. and Mehranzamir, K. 2020. A comprehensive review on renewable energy integration for combined heat and power production. Energy Conversion and Management 224, DOI: 10.1016/j.enconman.2020.113454.
 
6.
Bandura et al. 2023 – Bandura, I., Romaniuk, M., Komenda, N., Hadai, A. and Volynets, V. 2023. Optimisation of energy solutions: Alternative energy, reactive power compensation, and energy efficiency management. Machinery & Energetics 14(4), pp. 121–130, DOI: 10.31548/machinery/4.2023.121.
 
7.
Bretado-de los Rios et al. 2021 – Bretado-de los Rios, M.S., Rivera-Solorio, C.I. and Nigam, K.D.P. 2021. An overview of sustainability of heat exchangers and solar thermal applications with nanofluids: A review. Renewable and Sustainable Energy Reviews 142, DOI: 10.1016/j.rser.2021.110855.
 
8.
Ceylan, İ. and Ergun, A. 2013. Thermodynamic analysis of a new design of temperature controlled parabolic trough collector. Energy Conversion and Management 74, pp. 505–510, DOI: 10.1016/j.enconman.2013.07.020.
 
9.
Fialko et al. 1994 – Fialko, N.M., Prokopov, V.G., Meranova, N.O., Borisov, Yu.S., Korzhik, V.N. and Sherenkovskaya, G.P. 1994. Single particle-substrate thermal interaction during gas-thermal coatings fabrication. Fizika i Khimiya Obrabotki Materialov (1), pp. 70–78.
 
10.
Filkoski et al. 2020 – Filkoski, R.V., Lazarevska, A.M., Mladenovska, D. and Kitanovski, D. 2020. Steam system optimization of an industrial heat and power plant. Thermal Science 24(6), pp. 3649–3662, DOI: 10.2298/TSCI200403284F.
 
11.
Grigorenko et al. 2019 – Grigorenko, G.M., Adeeva, L.I., Tunik, A.Y., Korzhik, V.N., Doroshenko, L.K., Titkov, Y.P. and Chaika, A.A. 2019. Structurization of coatings in the plasma arc spraying process using B4C + (Cr, Fe)(7)C-3-cored wires. Powder Metallurgy and Metal Ceramics 58(5–6), pp. 312–322, DOI: 10.1007/s11106-019-00080-1.
 
12.
Grigorenko et al. 2020 – Grigorenko, G.M., Adeeva, L.I., Tunik, A.Y., Korzhik, V.N. and Karpets, M.V. 2020. Plasma arc coatings produced from powder-cored wires with steel sheaths. Powder Metallurgy and Metal Ceramics 59(5–6), pp. 318–329, DOI: 10.1007/s11106-020-00165-2.
 
13.
Grigoriev et al. 2024 – Grigoriev, D., Bekbolatova, J., Bulbul, O., Nygymanova, A. and Shopaeva, A. 2024. Experimental study of operation of a solar water heating system in winter. Bulletin of KazATK 131(2), pp. 523–529, DOI: 10.52167/1609-1817-2024-131-2-523-529.
 
14.
Gutarevych et al. 2020 – Gutarevych, Y., Mateichyk, V., Matijošius, J., Rimkus, A., Gritsuk, I., Syrota, O. and Shuba, Y. 2020. Improving fuel economy of spark ignition engines applying the combined method of power regulation. Energies 13(5), DOI: 10.3390/en13051076.
 
15.
He et al. 2020 – He, Y.-L., Qiu, Y., Wang, K., Yuan, F., Wang, W.-Q., Li, M.-J. and Guo, J.-Q. 2020. Perspective of concentrating solar power. Energy 198, DOI: 10.1016/j.energy.2020.117373.
 
16.
Ismanzhanov et al. 2012 – Ismanzhanov, A.I., Murzakulov, N.A. and Azimzhanov, O.A. 2012. Investigation on heat exchange in interlayer space of multilayer greenhouses. Applied Solar Energy (English translation of Geliotekhnika) 48(2), pp. 118–120, DOI: 10.3103/S0003701X12020107.
 
17.
Ismanzhanov, A.I. and Tashiev, N.M. 2016. Development and research of the technology for powdering agricultural products using solar energy. Applied Solar Energy (English translation of Geliotekhnika) 52(4), pp. 256–258, DOI: 10.3103/S0003701X16040101.
 
18.
Khanna et al. 2016 – Khanna, S., Sharma, V., Kedare, S.B. and Singh, S. 2016. Experimental investigation of the bending of absorber tube of solar parabolic trough concentrator and comparison with analytical results. Solar Energy 125, pp. 1–11, DOI: 10.1016/j.solener.2015.11.046.
 
19.
Kravets et al. 2024 – Kravets, T., Semerak, M., Galyanchuk, I., Yurasova, O. and Kharchuk, A. 2024. Analytical study on improving the efficiency and environmental friendliness of solid organic fuels. Machinery & Energetics 15(3), pp. 84–93, DOI: 10.31548/machinery/3.2024.84.
 
20.
Kravtsova et al. 2024 – Kravtsova, D., Ziuhan, U. and Fraimovych, A. 2024. Solar panels’ energy efficiency optimization using mathematical methods with computerisation of calculations. Journal of Kryvyi Rih National University 22(2), pp. 68–72, DOI: 10.31721/2306-5451-2024-2-22-68-72.
 
21.
Kudabayev et al. 2022 – Kudabayev, R., Mizamov, N., Zhangabay, N., Suleimenov, U., Kostikov, A., Vorontsova, A., Buganova, S., Umbitaliyev, A., Kalshabekovа, E. and Aldiyarov, Z. 2022. Construction of a model for an enclosing structure with a heat-accumulating material with phase transition taking into account the process of solar energy accumulation. Eastern-European Journal of Enterprise Technologies 6(8–120), pp. 26–37, DOI: 10.15587/1729-4061.2022.268618.
 
22.
Kumar et al. 2022 – Kumar, K.H., Daabo, A.M., Karmakar, M.K. and Hirani, H. 2022. Solar parabolic dish collector for concentrated solar thermal systems: A review and recommendations. Environmental Science and Pollution Research 29, pp. 32335–32367, DOI: 10.1007/s11356-022-18586-4.
 
23.
Lipiński et al. 2021 – Lipiński, W., Abbasi-Shavazi, E., Chen, J., Coventry, J., Hangi, M., Iyer, S., Kumar, A., Li, L., Li, S., Pye, J., Torres, J.F., Wang, B., Wang, Y. and Wheeler, V.M. 2021. Progress in heat transfer research for high-temperature solar thermal applications. Applied Thermal Engineering 184, DOI: 10.1016/j.applthermaleng.2020.116137.
 
24.
Malwad, D. and Tungikar, V. 2021. Development and performance testing of reflector materials for concentrated solar power: A review. Materials Today: Proceedings 46, pp. 539–544, DOI: 10.1016/j.matpr.2020.10.744.
 
25.
Masood et al. 2022 – Masood, F., Nor, N.B.M., Elamvazuthi, I., Saidur, R., Alam, M.A., Akhter, J., Yusuf, M., Ali, S.M., Sattar, M. and Baba, M. 2022. The compound parabolic concentrators for solar photovoltaic applications: opportunities and challenges. Energy Reports 8, pp. 13558–13584, DOI: 10.1016/j.egyr.2022.10.018.
 
26.
Miroshnichenko et al. 2025 – Miroshnichenko, D., Lebedev, V., Shved, M., Fedevych, O. and Pyshyev, S. 2025. Valorization of Lignite Use in “Green” Technologies: A Review. Chemistry and Chemical Technology 19(1), pp. 157–173, DOI: 10.23939/chcht19.01.157.
 
27.
Moosavian et al. 2021 – Moosavian, S.F., Borzuei, D. and Ahmadi, A. 2021. Energy, exergy, environmental and economic analysis of the parabolic solar collector with life cycle assessment for different climate conditions. Renewable Energy 165, pp. 301–320, DOI: 10.1016/j.renene.2020.11.036.
 
28.
Muñoz et al. 2022 – Muñoz, M., Rovira, A. and Montes, M.J. 2022. Thermodynamic cycles for solar thermal power plants: A review. Wiley Interdisciplinary Reviews: Energy and Environment 11(2), DOI: 10.1002/wene.420.
 
29.
Normuminov et al. 2023 – Normuminov, J., Anarbaev, A. and Xurramov, B. 2023. Modeling of thermal processes during the motion of combustion products in the gas chimneys of boilers. AIP Conference Proceedings 2552(1), 030028, DOI: 10.1063/5.0112376.
 
30.
Okonkwo et al. 2021 – Okonkwo, E.C., Wole-Osho, I., Almanassra, I.W., Abdullatif, Y.M. and Al-Ansari, T. 2021. An updated review of nanofluids in various heat transfer devices. Journal of Thermal Analysis and Calorimetry 145, pp. 2817–2872, DOI: 10.1007/s10973-020-09760-2.
 
31.
Panduro et al. 2022 – Panduro, E.A.C., Finotti, F., Largiller, G. and Lervåg, K.Y. 2022. A review of the use of nanofluids as heat-transfer fluids in parabolic-trough collectors. Applied Thermal Engineering 211, DOI: 10.1016/j.applthermaleng.2022.118346.
 
32.
Panevnyk, O. 2024. Study of the kinematic field of mixed flows. Prospecting and Development of Oil and Gas Fields 24(1), pp. 23–31, DOI: 10.69628/pdogf/1.2024.23.
 
33.
Patel, A. 2023. Enhancing heat transfer efficiency in solar thermal systems using advanced heat exchangers. Multidisciplinary International Journal of Research and Development (MIJRD) 2(6), pp. 31–51. [Online:] https://www.mijrd.com/papers/v... [Accessed: 2025-05-10].
 
34.
Pitz-Paal et al. 2007 – Pitz-Paal, R., Dersch, J., Milow, B., Tellez, F., Ferriere, A., Langnickel, U., Steinfeld, A., Karni, J., Zarza, E. and Popel, O. 2007. Development steps for parabolic trough solar power technologies with maximum impact on cost reduction. Journal of Solar Energy Engineering 129(4), pp. 371–377, DOI: 10.1115/1.2769697.
 
35.
Rebhi et al. 2022 – Rebhi, R., Menni, Y., Lorenzini, G. and Ahmad, H. 2022. Forced-convection heat transfer in solar collectors and heat exchangers: A review. Journal of Advanced Research in Applied Sciences and Engineering Technology 26(3), pp. 1–15. [Online:] https://www.researchgate.net/p... [Accessed: 2025-05-10].
 
36.
Rogovyi, A. 2018. Energy performances of the vortex chamber supercharger. Energy 163, pp. 52–60, DOI: 10.1016/j.energy.2018.08.075.
 
37.
Salamah et al. 2022 – Salamah, T., Ramahi, A., Alamara, K., Juaidi, A., Abdallah, R., Abdelkareem, M.A., Amer, E. and Olabi, A.G. 2022. Effect of dust and methods of cleaning on the performance of solar pv module for different climate regions: Comprehensive review. Science of The Total Environment 827, DOI: 10.1016/j.scitotenv.2022.154050.
 
38.
Sareriya et al. 2022 – Sareriya, K.J., Andharia, J.K., Vanzara, P.B. and Maiti, S. 2022. A comprehensive review of design parameters, thermal performance assessment, and medium temperature solar thermal applications of Scheffler concentrator. Cleaner Engineering and Technology 6, DOI: 10.1016/j.clet.2021.100366.
 
39.
Shanmugan et al. 2016 – Shanmugan, S., Vijayan, M., Suganya, V., Monisha, C., Sangavi, R., Geetanjali, P. and Sandhya, B. 2016. Honeycomb encapsulated atmospheric solar collector along with single basin solar still in highly energy absorbing weather condition. Indian Journal of Science and Technology 9(5), DOI: 10.17485/ijst/2016/v9i5/87153.
 
40.
Sharma et al. 2022 – Sharma, P., Said, Z., Kumar, A., Nizetic, S., Pandey, A., Hoang, A.T., Huang, Z., Afzal, A., Li, C., Le, A.T., Nguyen, X.P. and Tran, V.D. 2022. Recent advances in machine learning research for nanofluid-based heat transfer in renewable energy system. Energy & Fuels 36(13), pp. 6626–6658, DOI: 10.1021/acs.energyfuels.2c01006.
 
41.
Stančin et al. 2020 – Stančin, H., Mikulčić, H., Wang, X. and Duić, N. 2020. A review on alternative fuels in future energy system. Renewable and Sustainable Energy Reviews 128, DOI: 10.1016/j.rser.2020.109927.
 
42.
Stokowiec et al. 2023 – Stokowiec, K., Wciślik, S. and Kotrys-Działak, D. 2023. Innovative modernization of building heating systems: The economy and ecology of a hybrid district-heating substation. Inventions 8(1), DOI: 10.3390/inventions8010043.
 
43.
Torepashovna et al. 2022 – Torepashovna, B.B., Kairbergenovna, M.A., Sergeyevich, K.M., Uyezbekovna, T.G. and Kairbekovna, Z.A. 2022. AP13068541 Development of an Experimental Energy Complex Based on an Upgraded Boiler Plant Using Biofuels. [In:] 2022 International Conference on Communications, Information, Electronic and Energy Systems, CIEES 2022. Institute of Electrical and Electronics Engineers, DOI: 10.1109/CIEES55704.2022.9990656.
 
44.
Tropina et al. 2014 – Tropina, A.A., Kuzmenko, A.P., Marasov, S.V. and Vilchinsky, D.V. 2014. Ignition system based on the nanosecond pulsed discharge. IEEE Transactions on Plasma Science 42(12), pp. 3881–3885.
 
45.
Yousef et al. 2021 – Yousef, B.A.A., Hachicha, A.A., Rodriguez, I., Abdelkareem, M.A. and Inyaat, A. 2021. Perspective on integration of concentrated solar power plants. International Journal of Low-Carbon Technologies 16(3), pp. 1098–1125, DOI: 10.1093/ijlct/ctab034.
 
46.
Zhangabay et al. 2023 – Zhangabay, N., Kudabayev, R., Mizamov, N., Imanaliyev, K., Kolesnikov, A., Moldagaliyev, A., Umbitaliyev, A., Kopzhassarov, B., Fediuk, R. and Merekeyeva, A. 2023. Study of the model of the phase transition envelope taking into account the process of thermal storage under natural draft and by air injection. Case Studies in Construction Materials 18, DOI: 10.1016/j.cscm.2023.e02050.
 
eISSN:2720-569X
ISSN:1429-6675
Journals System - logo
Scroll to top