ORIGINAL PAPER
Investigation of a grid-connected solar pv system for the electric-vehicle charging station of an office building using pvsol software
 
 
More details
Hide details
1
National Research Centre, Egypt
 
 
Submission date: 2022-02-12
 
 
Final revision date: 2022-03-12
 
 
Acceptance date: 2022-03-13
 
 
Publication date: 2022-03-25
 
 
Corresponding author
Marwa Ibrahim   

National Research Centre, Egypt
 
 
Polityka Energetyczna – Energy Policy Journal 2022;25(1):175-208
 
KEYWORDS
TOPICS
ABSTRACT
Electric vehicles are predicted to blossom in Egypt in future years as an emerging technology in both the transportation and power sectors, contributing significantly to the decrease of fossil-fuel usage and CO2 emissions. As a result, to mitigate overloads of the vehicle energy demand on the nation’s electric grid, a solar PV system can be used to provide the electricity needs of an EV charging station. This objective of this paper is to present the design, simulation and economic analysis of a grid-connected solar-power system for an electric-charging station at a workplace in 6th October city, Egypt using PVSOL simulation tool to supply energy to the charging station and office-building appliances. The ideal orientation of the PV panels for maximum energy was determined using data from the photovoltaic geographical information system and predicted load-profile patterns. The amount of electricity generated the efficiency of the PV power system, financial analysis in terms of investment costs and the return on assets, and the ability to reduce CO2 emissions are all estimated in this study. This system also evaluates annual energy predictions and is used for electric-vehicle charging, grid feeding, and appliance consumption. Due to the relatively high solar insolation in Egypt; PV production energy was 10,463 kWh per year and the annual yield is 1,786.69 kWh/kWp. Of the power from PV generation, 66% is utilized for charging the electric vehicle and 34% for electrical appliances. After applying the financial analysis for 20 years; the electricity production cost is 0.0032 $/kWh and the payback period for this proposed system is about five years. The annual energy costs after the installation of PV systems proposed system created a financial saving of 21%. The performance ratio of this system inverter is 84% and the monthly average of the electric vehicle SOC over a year doesn’t decrease out of 27% plus 5 tons of CO2 emissions per year were avoided. This research can be used as a recommendation for stakeholders who want to use this energy source for vehicle charging.
METADATA IN OTHER LANGUAGES:
Polish
Badanie systemu fotowoltaicznego podłączonego do sieci dla stacji ładowania pojazdów elektrycznych w budynku biurowym przy użyciu oprogramowania PVSOL
czysta energia słoneczna, pojazdy elektryczne, stacja ładowania, emisja CO2, ocena ekonomiczna
Przewiduje się, że w najbliższych latach pojazdy elektryczne rozwiną się w Egipcie jako technologia wschodząca zarówno w sektorze transportu, jak i energetyki, przyczyniając się znacząco do zmniejszenia zużycia paliw kopalnych i emisji CO2. Dlatego proponuje się, że aby złagodzić przeciążenia krajowej sieci elektrycznej wynikające z zapotrzebowania pojazdów na energię, można wykorzystać system fotowoltaiczny do zaspokojenia zapotrzebowania na energię elektryczną w stacjach ładowania pojazdów elektrycznych. Celem niniejszego artykułu jest przedstawienie projektu, symulacji i analizy ekonomicznej, z wykorzystaniem narzędzia symulacyjnego PVSOL, dla podłączonego do sieci systemu zasilania energią słoneczną biura w mieście Madinat as-Sadis min Uktubar w Egipcie celem dostarczania energii do stacji ładującej i urządzeń biurowych. Idealną orientację paneli fotowoltaicznych dla uzyskania maksymalnej energii określono na podstawie danych z fotowoltaicznego systemu informacji geograficznej i przewidywanych wzorców profilu obciążenia. W niniejszym opracowaniu szacowana jest ilość wytworzonej energii elektrycznej, sprawność systemu fotowoltaicznego, analiza finansowa pod kątem kosztów inwestycji i zwrotu z aktywów oraz zdolność do redukcji emisji CO2. System ten ocenia również roczne prognozy zużycia energii i jest używany do ładowania pojazdów elektrycznych, zasilania sieci i zaspokojenia zużycia urządzeń. Ze względu na stosunkowo wysokie nasłonecznienie w Egipcie produkcja energii fotowoltaicznej wyniosła 10 463 kWh rocznie, a roczna wydajność to 1786,69 kWh/kWp. 66% energii z produkcji fotowoltaicznej jest wykorzystywane do ładowania pojazdów elektrycznych, a 34% do urządzeń elektrycznych. Po przeprowadzeniu analizy finansowej w okresie 20 lat: koszt produkcji energii elektrycznej wynosi 0,0032 $/kWh, a okres zwrotu nakładów dla proponowanego systemu to około pięć lat. Obliczono, że roczne oszczędności zużycia energii po instalacji takich systemów PV przyniosły w wymiarze finansowym 21%. Współczynnik wydajności tego falownika systemowego wynosi 84%, a średnia miesięczna SoC pojazdu elektrycznego w ciągu roku nie zmniejsza się o 27%, a dodatkowo mamy oszczędność 5 ton emisji CO2 rocznie. Badania te można wykorzystać jako rekomendację dla interesariuszy, którzy chcą wykorzystać to źródło energii do ładowania pojazdów.
REFERENCES (54)
1.
Advanced... 2022. Advanced inverter functions to support high levels of distributed solar policy and regulatory the need for advanced. [Online] https://www.nrel.gov/docs/fy15... [Accessed: 2022-02-15].
 
2.
Ahmad et al. 2021 – Ahmad, F., Khalid, M. and Panigrahi, B.K. 2021. An enhanced approach to optimally place the solar powered electric vehicle charging station in distribution network. Journal of Energy Storage 42(August), p. 103090, DOI: 10.1016/j.est.2021.103090.
 
3.
Alsharif et al. 2021 – Alsharif, A., Tan, C.W., Ayop, R., Lau, K.Y. and Dobi, A.M. 2021. A rule-based power management strategy for Vehicle-to-Grid system using antlion sizing optimization. Journal of Energy Storage 41(April), p. 102913, DOI: 10.1016/j.est.2021.102913.
 
4.
Arar, S. 2020. EV Charging Modes in the IEC Standard. All about circuits. [Online] https://www.allaboutcircuits.c... [Accessed: 2022-01-20].
 
5.
Arancibia, A. and Strunz, K. 2012. Modeling of an electric vehicle charging station for fast DC charging. IEEE International Electric Vehicle Conference. Greenville, SC, USA: IEEE, DOI: 10.1109/IEVC.2012.6183232.
 
6.
Barakat et al. 2020 – Barakat, B., Ibrahim, H. and Elbaset, A.A. 2020. Multi-objective optimization of grid-connected PV-wind hybrid system considering reliability, cost, and environmental aspects. Sustainable Cities and Society 60, DOI: 10.1016/j.scs.2020.102178.
 
7.
Bhandari et al. 2014 – Bhandari, B., Poudel, S.R., Lee, K-T. and Ahn, S-H. 2014. Mathematical modeling of hybrid renewable energy system: A review on small hydro-solar-wind power generation. International Journal of Precision Engineering and Manufacturing – Green Technology 1(2), pp. 157–173, DOI: 10.1007/s40684-014-0021-4.
 
8.
Birnie III, D.P. 2009. Solar-to-vehicle (S2V) systems for powering commuters of the future. Journal of Power Sources 186(2), pp. 539–542, DOI: 10.1016/j.jpowsour.2008.09.118.
 
9.
Calise et al. 2021 – Calise, F., Cappiello, F.L., d’Accadia, M.D. and Vicidomini, M. 2021. Smart grid energy district based on the integration of electric vehicles and combined heat and power generation. Energy Conversion and Management 234, p. 113932, DOI: 10.1016/j.enconman.2021.113932.
 
10.
Carbon Pricing Dashboard 2020. World bank. [Online] https://www.worldbank.org/en/r... [Accessed: 2022-02-21].
 
11.
Chandra Mouli et al. 2016 – Chandra Mouli, G.R., Bauer, P. and Zeman, M. 2016. System design for a solar powered electric vehicle charging station for workplaces. Applied Energy 168(2016), pp. 434–443, DOI: 10.1016/j.apenergy.2016.01.110.
 
12.
Colak et al. 2016 – Colak, I., Bayindir, R., Aksoz, A., Hossain, E. and Sayilgan, S. 2016. Designing a competitive electric vehicle charging station with solar PV and storage. INTELEC, International Telecommunications Energy Conference (Proceedings), 2016 September(October), DOI: 10.1109/INTLEC.2015.7572480.
 
13.
Cortés Borray et al. 2021 – Cortés Borray, A.F., Garcés, A., Merino, J., Torres, E. and Mazón, J. 2021. New energy bound-based model for optimal charging of electric vehicles with solar photovoltaic considering low-voltage network’s constraints. International Journal of Electrical Power and Energy Systems 129(January 2020), DOI: 10.1016/j.ijepes.2021.106862.
 
14.
Das et al. 2019 – Das, H.S., Rahman, M.M., Li, S. and Tan, C.W. 2019. Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review. Renewable and Sustainable Energy Reviews 120, DOI: 10.1016/j.rser.2019.109618.
 
15.
Deshmukh, M.K. and Singh, A.B. 2019. Modeling of energy performance of stand-alone SPV system using HOMER pro. Energy Procedia 156(September 2018), pp. 90–94, DOI: 10.1016/j.egypro.2018.11.100.
 
16.
Domínguez-Navarro et al. 2018 – Domínguez-Navarro, J.A., Dufo-López, R., Yusta-Loyo, J.M., Artal-Sevil, J.S. and Bernal-Agustín, J.L. 2018. Design of an electric vehicle fast-charging station with integration of renewable energy and storage systems. International Journal of Electrical Power and Energy Systems 105, pp. 46–58, DOI: 10.1016/j.ijepes.2018.08.001.
 
17.
Dufo-López, R. and Bernal-Agustín, J.L. 2008. Multi-objective design of PV–wind–diesel–hydrogen–battery systems. Renewable Energy 33(12), pp. 2559–2572, DOI: 10.1016/j.renene.2008.02.027.
 
18.
Egypt electricity prices 2021. Global petrol prices. [Online] https://www.globalpetrolprices... [Accessed: 2022-02-07].
 
19.
Ekren et al. 2021 – Ekren, O., Canbaz, C.H. and Güvel, Ç.B. 2021. Sizing of a solar-wind hybrid electric vehicle charging station by using HOMER software. Journal of Cleaner Production 279, DOI: 10.1016/j.jclepro.2020.123615.
 
20.
Electric Car Batteries 2022. IBERDPOLA. [Online] https://www.iberdrola.com/inno... [Accessed: 2022-02-07].
 
21.
Farrag, O. 2018. The Future of Electric Cars in Egypt. Egypt Oil & Gas Neswpaper. [Onlin] https://egyptoil-gas.com/featu... [Accessed: 2022-02-07].
 
22.
Fathabadi, H. 2017. Novel grid-connected solar/wind powered electric vehicle charging station with vehicle-to-grid technology. Energy 132, pp. 1–11, DOI: 10.1016/j.energy.2017.04.161.
 
23.
Fotouhi et al. 2019 – Fotouhi, A., Shateri, N. Laila, D.S. and Auger D.J. 2019. Electric vehicle energy consumption estimation for a fleet management system. International Journal of Sustainable Transportation. Taylor & Francis, 0(0), pp. 1–15, DOI: 10.1080/15568318.2019.1681565.
 
24.
Ghotge et al. 2021 – Ghotge, R., van Wijk, A. and Lukszo, Z. 2021. Off-grid solar charging of electric vehicles at long-term parking locations. Energy 227, DOI: 10.1016/j.energy.2021.120356.
 
25.
Goswami, A. and Sadhu, P.K. 2021. Stochastic firefly algorithm enabled fast charging of solar hybrid electric vehicles. Ain Shams Engineering Journal. Faculty of Engineering, Ain Shams University 12(1), pp. 529–539, DOI: 10.1016/j.asej.2020.08.016.
 
26.
Hasan et al. 2021 – Hasan, M.K., Mahmud, M., Habib, A.K.M.A., Motakabber, S.M.A. and Islam, S. 2021. Review of electric vehicle energy storage and management system: Standards, issues, and challenges. Journal of Energy Storage 41 (December 2020), p. 102940, DOI: 10.1016/j.est.2021.102940.
 
27.
Is Egypt ready for electric vehicles? 2020. Enterprise, the state of the Nation. [Online] https://enterprise.press/stori... [Accessed: 2022-02-07].
 
28.
Electric vehicles in Egypt 2019. [Online] http://www.lynxegypt.com/asset... [Accessed: 2022-01-01].
 
29.
Kandasamy et al. 2021 – Kandasamy, V., Keerthika, K. and Mathankumar, M. 2021. Solar based wireless on road charging station for electric vehicles. Materials Today: Proceedings 45(5), pp. 8059–8063, DOI: 10.1016/j.matpr.2021.01.102.
 
30.
Karmaker et al. 2018 – Karmaker, A.K., Ahmed, M.R., Hossain, M.A. and Sikder, M.M. 2018. Feasibility assessment & design of hybrid renewable energy based electric vehicle charging station in Bangladesh. Sustainable Cities and Society 39, pp. 189–202, DOI: 10.1016/j.scs.2018.02.035.
 
31.
Kia Niro EV Specifications 2021. Electric Vehicle Wiki. [Online] http://www.electricvehiclewiki... [Accessed: 2022-02-15].
 
32.
Kumar et al. 2016 – Kumar, N.M., Singh, A.K. and Reddy, K.V.K. 2016. Fossil Fuel to Solar Power: A Sustainable Technical Design for Street Lighting in Fugar City, Nigeria. Procedia Computer Science 93(September), pp. 956–966, DOI: 10.1016/j.procs.2016.07.284.
 
33.
Kumar et al. 2019 – Kumar, V., Teja, V.R., Singh, M. and Mishra, S. 2019. PV Based Off-Grid Charging Station for Electric Vehicle. IFAC-PapersOnLine 52(4), pp. 276–281, DOI: 10.1016/j.ifacol.2019.08.211.
 
34.
McLaren et al. 2016 – McLaren, J., Miller, J., O’Shaughnessy, E., Wood, E. and Shapiro, E. 2016. CO2 emissions associated with electric vehicle charging: The impact of electricity generation mix, charging infrastructure availability and vehicle type. The Electricity Journal 29(5), pp. 72–88, DOI: 10.1016/j.tej.2016.06.005.
 
35.
Mehadi et al. 2021 – Mehadi, A.A., Chowdhury, M.A., Nishat, M.M., Faisal, F. and Islam, M.M. 2021. Design, simulation and analysis of monofacial solar pv panel based energy system for university residence : a case study. ICEEPE 2020, IOP Conf. Series: Materials Science and Engineering 1045, DOI: 10.1088/1757-899X/1045/1/012011.
 
36.
Mehrjerdi, H. 2019. Off-grid solar powered charging station for electric and hydrogen vehicles including fuel cell and hydrogen storage. International Journal of Hydrogen Energy 44(23), pp. 11574–11583, DOI: 10.1016/j.ijhydene.2019.03.158.
 
37.
Nguyễn 2017. Da Nang promotes public use of electric vehicles for environmental protection. DA NANG Today. [Online] https://baodanang.vn/english/e... [Accessed: 2022-02-15].
 
38.
Nhede, N. 2020. Global solar PV installations to hit 115GW in 2020 – report. [Online] https://www.smart-energy.com/r... [Accessed: 2022-02-15].
 
39.
Nunesa et al. 2015 – Nunesa, P., Fariasb, T. and Brito, M.C. 2015. Day charging electric vehicles with excess solar electricity for a sustainable energy system. Energy 80(1), pp. 263–274, DOI: 10.1016/j.energy.2014.11.069.
 
40.
Olatunde et al. 2020 – Olatunde, O., Hassana, M.Y., Abdullaha, M.P. and Rahman, H.A. 2020. Hybrid photovoltaic/small-hydropower microgrid in smart distribution network with grid isolated electric vehicle charging system. Journal of Energy Storage 31(April), DOI: 10.1016/j.est.2020.101673.
 
41.
Operation Manual 2013. Installation and Operation Manual of Conext RL 5000 E.
 
42.
Osório et al. 2021a – Osório, G.J., Lotfi, M., Gough, M., Javadi, M., Espassandim, H.M.D., Shafie-khah, M. and Catalão, J.P.S. 2021a. Modeling an electric vehicle parking lot with solar rooftop participating in the reserve market and in ancillary services provision. Journal of Cleaner Production 318(July), DOI: 10.1016/j.jclepro.2021.128503.
 
43.
Osório et al. 2021b – Osório, G.J, Gough, M., Lotfi, M., Santos, F.M., Espassandim, H.M.D., Shafie-khah, M. and Catalão, J.P.S. 2021b. Rooftop photovoltaic parking lots to support electric vehicles charging: A comprehensive survey. International Journal of Electrical Power and Energy Systems 133(July), DOI: 10.1016/j.ijepes.2021.107274.
 
44.
PVGIS Data 2021. Photovoltaic Geographical Information System PVGIS, European Commission. [Online] https://re.jrc.ec.europa.eu/pv... [Accessed: 2022-02-07].
 
45.
Pushpavalli et al. 2021 – Pushpavalli, M., Abirami, P., Sivagami, P. and Geetha, V. 2021. Investigation of Grid Connected PV System with Electrial Appliances, Electric Vehicles and Battery Systems using PVsol Software. Proceedings of the First International Conference on Advanced Scientific Innovation in Science, Engineering and Technology, ICASISET 2020, 16–17 May 2020, Chennai, India, DOI: 10.4108/eai.16-5-2020.2304108.
 
46.
Singh et al. 2016 – Singh, S., Singha, M. and Kaushik, S.C. 2016. Feasibility study of an islanded microgrid in rural area consisting of PV, wind, biomass and battery energy storage system. Energy Conversion and Management 128, pp. 178–190, DOI: 10.1016/j.enconman.2016.09.046.
 
47.
Solar panels specifications 2021. SunTech. [Online] https://pdf.directindustry.com... [Accessed: 2022-01-17].
 
48.
Software 2021. PV*SOL premium. Valentin Software GmbH, Valentin software. [Online] https://valentin-software.com/...: 2022-02-25].
 
49.
Srujana et al. 2021 – Srujana, A., Srilatha, A. and Suresh, S. 2021. Electric Vehicle Battery Modelling and Simulation Using MATLAB-Simulink. Turkish Journal of Computer and Mathematics Education 12(3), pp. 4604–4609.
 
50.
Sylvia, T. 2020. The future of cars is electric – but how soon is this future? [Online] https://pv-magazine-usa.com/20... [Accessed: 2022-01-17].
 
51.
Thanh, N.B. 2021. Investigation of Grid-connected PV System with Electrical Appliances, Electric Vehicles. Thu Dau Mot University Journal of Science 3(2), pp. 162–176, DOI: 10.37550/tdmu.ejs/2021.02.197.
 
52.
Tulpule et al. 2013 – Tulpule, P.J., Marano, V., Yurkovich, S. and Rizzoni, G. 2013. Economic and environmental impacts of a PV powered workplace parking garage charging station. Applied Energy 108, pp. 323–332, DOI: 10.1016/j.apenergy.2013.02.068.
 
53.
Velaga, N.R and Kumar, A. 2012. Techno-economic Evaluation of the Feasibility of a Smart Street Light System: A case study of Rural India. Procedia – Social and Behavioral Sciences 62, pp. 1220–1224, DOI: 10.1016/j.sbspro.2012.09.208.
 
54.
Wang et al. 2020 – Wanga, Y., Kazemi, M., Nojavan, S. and Jermsittiparsert, K. 2020. Robust design of off-grid solar-powered charging station for hydrogen and electric vehicles via robust optimization approach. International Journal of Hydrogen Energy 45(38), pp. 18995–19006, DOI: 10.1016/j.ijhydene.2020.05.098.
 
eISSN:2720-569X
ISSN:1429-6675
Journals System - logo
Scroll to top