ORIGINAL PAPER
Research and modeling of the reliability of overhead lines of 6 to 10 kV with consideration of the influence of the external environment
 
More details
Hide details
1
Atyrau Oil and Gas University named after S. Utebayev, Kazakhstan
 
2
S. Seifullin Kazakh Agrotechnical University, Kazakhstan
 
 
Submission date: 2022-11-14
 
 
Final revision date: 2022-12-22
 
 
Acceptance date: 2022-12-22
 
 
Publication date: 2023-03-23
 
 
Corresponding author
Vladimir Yashkov   

Atyrau Oil and Gas University named after S. Utebayev, Kazakhstan
 
 
Polityka Energetyczna – Energy Policy Journal 2023;26(1):43-58
 
KEYWORDS
TOPICS
ABSTRACT
The relevance of this study is due to the fact that the presented object of scientific work, namely 6–10 kV overhead lines, plays an important role in the process of providing electrical energy to consumers of the oil industry. The aim of the work is a detailed analysis of the reliability of overhead lines which are exploited in the difficult natural and climatic conditions of the Caspian region and Mangyshlak and the introduction of effective modeling tools for overhead lines. The methods used include the analytical method, theoretical method, logical analysis method, functional method, statistical method, synthesis method and others. In the course of the study, the natural and climatic conditions of the Atyrau region and their differences were noted and the reliability of the power supply systems was also analyzed. The most damaged elements of industrial power supply systems and their part of failures were identified in comparison with other elements of the power supply system. It was determined that the electrical power sector plays a crucial role in the oil and gas sector by determining the solution of the production tasks of all departments which have a significant impact on the formation of economic indicators. The practical value of the revealed results is that they will help to highlight the problems of operational reliability of the 6–10 kV overhead lines, considering the various natural and climatic factors, which in turn will help to change the power supply scheme and increase the resistance to external influences.
METADATA IN OTHER LANGUAGES:
Polish
Badania i modelowanie niezawodności linii napowietrznych od 6 do 10 kV z uwzględnieniem wpływu środowiska zewnętrznego
eksploatacja, zapewnienie, system elektroenergetyczny, odpady, czynniki meteorologiczne
Znaczenie niniejszej pracy wynika z faktu, że prezentowany w artykule obiekt: linie napowietrzne 6–10 kV odgrywają ważną rolę w procesie dostarczania energii elektrycznej odbiorcom przemysłu naftowego. Celem pracy jest szczegółowa analiza niezawodności linii napowietrznych eksploatowanych w trudnych warunkach przyrodniczo-klimatycznych regionu Morza Kaspijskiego i Mangyszłaku oraz wprowadzenie efektywnych narzędzi do modelowania linii napowietrznych. Stosowane metody obejmują metodę analityczną, metodę teoretyczną, metodę analizy logicznej, metodę funkcjonalną, metodę statystyczną, metodę syntezy i inne. W trakcie badań odnotowano warunki przyrodnicze i klimatyczne regionu Atyrau oraz ich różnice, a także przeanalizowano niezawodność systemów zasilania. Zidentyfikowano najbardziej uszkodzone elementy przemysłowych systemów zasilania oraz ich część awarii w porównaniu z innymi elementami systemu zasilania. Stwierdzono, że sektor elektroenergetyczny odgrywa kluczową rolę w sektorze naftowo-gazowym, determinując rozwiązanie zadań produkcyjnych wszystkich działów, które mają istotny wpływ na kształtowanie się wskaźników ekonomicznych. Praktyczną wartością uzyskanych wyników jest to, że pomogą one uwidocznić problemy niezawodności pracy linii napowietrznych 6–10 kV z uwzględnieniem różnych czynników przyrodniczych i klimatycznych, co z kolei przyczyni się do zmiany schematu zasilania i zwiększenia odporności na wpływy zewnętrzne.
 
REFERENCES (23)
1.
Bishnoi, D. and Chaturvedi, H. 2022. Optimised site selection of hybrid renewable installations for flare gas reduction using Multi-Criteria decision making. Energy Conversion and Management: X 13, DOI: 10.1016/j.ecmx.2022.100181.
 
2.
Bondarenko, I.N. and Galich, A.V. 2015. Measuring resonant transducers on the basis of microstrip structures. Telecommunications and Radio Engineering 74(9), pp. 807–814, DOI: 10.1615/TelecomRadEng.v74.i9.60.
 
3.
Bondarenko et al. 2018 – Bondarenko, I.N., Gorbenko, E.A. and Krasnoshchok, V.I. 2018. Microwave switch based on a combined coaxial-waveguide tee for a cavity pulse shaper. Telecommunications and Radio Engineering 77(5), pp. 391–397, DOI: 10.1615/TelecomRadEng.v77.i5.30.
 
4.
Celentano et al. 2021 – Celentano, U., Kauppinen, M. and Röning, J. 2021. Ground Support for Drone-based Industrial Inspections. [In:] 2021 Aerial Robotic Systems Physically Interacting with the Environment (pp. 1–5). Piscataway: IEEE.
 
5.
Dzhumamukhambetov et al. 2016 – Dzhumamukhambetov, N.G., Yashkov, V.A. and Yershov, M.S. 2016. Express-method of calculating reliability of industrial power supply systems taking into account the influence of the environment (Ekspress-metod rascheta uzlovoy nadezhnosti sistem promyshlennogo elektrosnabzheniya s uchetom vliyaniya vneshney sredy). Russian Internet Journal of Electrical Engineering 3(2), pp. 40–42, DOI: 10.24892/RIJEE/2016020 (in Russian).
 
6.
Gu et al. 2021 – Gu, C., Li, H., and Haces-Fernandez, F. 2021. Feasibility of the Potential for Wave and Wind Energy Hybrid Farm to Supply Offshore Oil Platform in Gulf of Mexico. DOI: 10.4043/31124-MS.
 
7.
Gulkov, YU.V. and Turysheva, A.V. 2021. Reducing the influence of lightning overvoltages on the electrical insulation of overhead power lines 6 (10) KV. News of the Tula State University. Engineering Sciences 5, pp. 452–458.
 
8.
Gunger, Y.R. and Lavrov, Y.A. 2008. Experience in the construction and operation of 6–10 kV power transmission lines on steel poles of the ELSI company in the oil and gas complex. Territory Oil and Gas 6, pp. 178–181.
 
9.
Ivanov, D.M. 2022. Application of automatic sectioning in order to improve the reliability of power supply to consumers of the overhead distribution network 6 (10) kV. Age of Science 30, pp. 49–58.
 
10.
Kockel et al. 2022 – Kockel, C., Nolting, L., Priesmann, J. and Praktiknjo, A. 2022. Does renewable electricity supply match with energy demand? – A spatio-temporal analysis for the German case. Applied Energy 308(C), DOI: 10.1016/j.apenergy.2021.118226.
 
11.
Kozlov, P.E. 2022. Simulation of emergency outages of network electrical equipment in order to increase reliability while optimizing the schedule of planned outages. Science Bulletin 50, pp. 172–177.
 
12.
Lansberg et al. 2022 – Lansberg, A.A., Panfilov, A.A. and Vinogradov, A.V. 2022. Analysis of possible methods of unauthorized voltage supply in electrical networks of 0.4–10 kV and the consequences of this. Scientific Journal of Young Scientists 27, pp. 43–50.
 
13.
Li et al. 2022 – Li, H., Yu, P., Li, S. and Deng, J. 2022. Study on internal overvoltages of 220 kV submarine cable transmission system of the offshore oil-gas field group. Energy Reports 8, pp. 377–386, DOI: 10.1016/j.egyr.2022.01.202.
 
14.
Misuri, A. and Cozzani, V. 2021. A paradigm shift in the assessment of Natech scenarios in chemical and process facilities. Process Safety and Environmental Protection 152, pp. 338–351, DOI: 10.1016/j.psep.2021.06.018.
 
15.
Okorn et al. 2021 – Okorn, K., Jimenez, A., Collier-Oxandale, A., Johnston, J. and Hannigan, M. 2021. Characterizing methane and total non-methane hydrocarbon levels in Los Angeles communities with oil and gas facilities using air quality monitors. Science of the Total Environment 777(15), DOI: 10.1016/j.scitotenv.2021.146194.
 
16.
Oliveira-Pinto et al. 2019 – Oliveira-Pinto, S., Rosa-Santos, P. and Taveira-Pinto, F. 2019. Electricity supply to offshore oil and gas platforms from renewable ocean wave energy: Overview and case study analysis. Energy Conversion and Management 186, pp. 556–569, DOI: 10.1016/j.enconman.2019.02.050.
 
17.
Sakib et al. 2021 – Sakib, N., Hossain, N.U.I., Nur, F., Talluri, S., Jaradat, R. and Lawrence, J.M. 2021. An assessment of probabilistic disaster in the oil and gas supply chain leveraging Bayesian belief network. International Journal of Production Economics 235(C), DOI: 10.1016/j.ijpe.2021.108107.
 
18.
Sarmiento et al. 2021 – Sarmiento, L., Molar-Cruz, A., Avraam, C., Brown, M., Rosellón, J., Siddiqui, S. and Rodríguez, B.S. 2021. Mexico and US power systems under variations in natural gas prices. Energy Policy 156, DOI: 10.1016/j.enpol.2021.112378.
 
19.
Toshkhodzhaeva, M.I. and Khodzhiev, A.A. 2020. Mathematical model of the influence of natural and operational factors on the reliability of 110 kV power transmission lines in a sharply continental climate. Bulletin of the Kazan State Power Engineering University 1(45), pp. 71–81.
 
20.
Yang et al. 2022 – Yang, Z., He, D. and Ding, L. 2022. The optimization study for electromagnetic radiation with ultrahigh voltage transmission lines. IEEE Transactions on Electromagnetic Compatibility 64(5), pp. 1–13, DOI: 10.1109/TEMC.2022.3187446.
 
21.
Zhang et al. 2021 – Zhang, Q., Zhang, H., Yan, Y., Yan, J., He, J., Li, Z. Shang, W. and Liang, Y. 2021. Sustainable and clean oilfield development: How access to wind power can make offshore platforms more sustainable with production stability. Journal of Cleaner Production 294, DOI: 10.1016/j.jclepro.2021.126225.
 
22.
Zhao et al. 2021 – Zhao, L., Li, D., Guo, X., Xue, J., Wang, C. and Sun, W. 2021. Cooperation risk of oil and gas resources between China and the countries along the Belt and Road. Energy 227, DOI: 10.1016/j.energy.2021.120445.
 
23.
Zhu et al. 2016 – Zhu, Z., Lu, S., Gao, B., Yi, T. and Chen, B. 2016. Life cycle cost analysis of three types of power lines in 10 kV distribution network. Inventions 1(4), pp. 1–21, DOI: 10.3390/inventions1040020.
 
eISSN:2720-569X
ISSN:1429-6675
Journals System - logo
Scroll to top