ORIGINAL PAPER
The assessment of hydrogen production potential from wind power in Vietnam
 
More details
Hide details
1
Electric Power University, Viet Nam
 
2
Institute of Science and Technology for Energy and Environment, Vietnam Academy of Science and Technology, Viet Nam
 
These authors had equal contribution to this work
 
 
Submission date: 2024-04-13
 
 
Final revision date: 2024-06-26
 
 
Acceptance date: 2024-07-10
 
 
Online publication date: 2024-09-19
 
 
Corresponding author
Vu Minh Phap   

Institute of Science and Technology for Energy and Environment, Vietnam Academy of Science and Technology, Viet Nam
 
 
Polityka Energetyczna – Energy Policy Journal 2024;27(4):5-18
 
KEYWORDS
TOPICS
ABSTRACT
Hydrogen production technology from wind energy is one of the feasible methods to shift dependence on fossil fuels to clean energy in the near future. In Vietnam, the government is also developing policies and regulations to promote the development of the hydrogen industry. However, hydrogen production efficiency from areas with different potential for wind power exploitation in Vietnam has not yet been researched to provide a sufficient basis for investors to develop projects. In this paper, the hydrogen production potential from wind power systems is analysed based on the wind energy potential in each region in Vietnam with the support of SAM software and hydrogen production formulas. Phu Yen province (South Central region) and Dak Lak province (Central Highlands region) with the highest wind energy potential, have the largest hydrogen production of 45,286.1 kg/year and 42,675.4 kg/year, respectively. Wind power will help reduce large amounts of CO2 emissions into the environment by replacing grid electricity that uses fossil fuels in the electrolysis process. The amount of CO2 emission reduction is determined by corresponding to the amount of wind power produced for the hydrogen generation process. Phu Yen province has the highest CO2 emission reduction of 1,792,968 kg/year, while Ho Chi Minh City has the lowest value of 859,233 kg/year. The study results can be referenced by managers, consultants, and investors to support the development of the green hydrogen sector in Vietnam.
FUNDING
This work was funded by the Vietnam Academy of Science and Technology (VAST), grant number DATT00.01/23-25
METADATA IN OTHER LANGUAGES:
Polish
Ocena potencjału produkcji wodoru z elektrowni wiatrowych w Wietnamie
wodór, emisja CO2, elektryczność, energia wiatrowa
Technologia produkcji wodoru z energii wiatrowej jest jedną z wykonalnych metod przejścia od zależności od paliw kopalnych do czystej energii w niedalekiej przyszłości. W Wietnamie rząd opracowuje również polityki i przepisy mające na celu promowanie rozwoju przemysłu wodorowego. Jednak efektywność produkcji wodoru z obszarów o różnym potencjale wykorzystania energii wiatrowej w Wietnamie nie została jeszcze zbadana, aby zapewnić inwestorom wystarczającą podstawę do rozwijania projektów. W tym artykule potencjał produkcji wodoru z systemów energetyki wiatrowej jest analizowany na podstawie potencjału energii wiatrowej w każdym regionie Wietnamu przy wsparciu oprogramowania SAM i wzorów produkcji wodoru. Prowincja Phu Yen (region południowo-centralny) i prowincja Dak Lak (region Central Highlands) o największym potencjale energii wiatrowej mają największą produkcję wodoru, odpowiednio 45 286,1 i 42 675,4 kg/rok. Energia wiatrowa pomoże zmniejszyć duże ilości emisji CO2 do środowiska poprzez zastąpienie energii elektrycznej z sieci, która wykorzystuje paliwa kopalne w procesie elektrolizy. Ilość redukcji emisji CO2 jest określana na podstawie ilości energii wiatrowej wytworzonej w procesie wytwarzania wodoru. Prowincja Phu Yen ma najwyższą redukcję emisji CO2 wynoszącą 1 792 968 kg/rok, podczas gdy Ho Chi Minh ma najniższą wartość wynoszącą 859 233 kg/rok. Wyniki badania mogą być wykorzystywane przez menedżerów, konsultantów i inwestorów w celu wsparcia rozwoju sektora zielonego wodoru w Wietnamie.
REFERENCES (26)
1.
AlZohbi et al. 2923 – AlZohbi, G., AlShuhail, L. and Almoaikel, A. 2023. An estimation of green hydrogen generation from wind energy: A case study from KSA. Energy Reports 9(11), pp. 262–267, DOI: 10.1016/j.egyr.2023.09.010.
 
2.
Chelvam et al. 2024 – Chelvam, K., Hanafiah, M.M., Woon, K.S. and Ali, K.A. 2024. A review on the environmental performance of various hydrogen production technologies: An approach towards hydrogen economy. Energy Reports 11, pp. 369–383, DOI: 10.1016/j.egyr.2023.11.060.
 
3.
Department of Climate change 2024. [Online] http://www.dcc.gov.vn/van-ban-... [Accessed: 2024-03-25].
 
4.
Franco, F. 2020. Modeling of a Hydrogen Production Plant Supported by Wind and Solar Photovoltaic Sources. Research Dissertation Report of the Master’s Degree.
 
5.
Freeman et al. 2014 – Freeman, J., Jorgenson, J., Gilman, P. and Ferguson, T. 2014. Reference Manual for the System Advisor Model’s Wind Power Performance Model. National Renewable Energy Laboratory (NREL). [Online] https://www.nrel.gov/docs/fy14... [Accessed: 2024-09-05].
 
6.
Global Wind Atlas 2024. [Online] https://globalwindatlas.info/e... [Accessed: 2024-03-28].
 
7.
Hassan et al. 2024 – Hassan, Q., Nassar, A.K., Al-Jiboory, A.K., Viktor, P., Telba, A.A., Awwad, E.M., Amjad, A., Fakhruldeen, H.F., Algburi, S., Mashkoor, S.C., Jaszczur, M., Sameen, A.Z. and Barakat, M. 2024. Mapping Europe renewable energy landscape: Insights into solar, wind, hydro, and green hydrogen production. Technology in Society 77, DOI: 10.1016/j.techsoc.2024.102535.
 
8.
Hoang et al. 2023 – Hoang, A.T., Pandey, A., Lichtfouse, E. Bui, V.G., Veza, I., Nguyen, H.L. and Nguyen, X.P. 2023. Green hydrogen economy: Prospects and policies in Vietnam. International Journal of Hydrogen Energy 48(80), pp. 31049–31062, DOI: 10.1016/j.ijhydene.2023.05.306.
 
9.
Javaid et al. 2022 – Javaid, A., Javaid, U., Sajid, M., Rashid, M., Uddin, E., Ayaz, Y. and Waqas, A. 2022. Forecasting Hydrogen Production from Wind Energy in a Suburban Environment Using Machine Learning. Energies 15(23), DOI: 10.3390/en15238901.
 
10.
Li et al. 2021 – Li, Z., Hou, S., Cao, X., Sun, H., Qin, Y., Wang, P. and Che, S. 2021. Modeling and analysis of hydrogen storage wind and gas complementary power generation system. Energy Exploration & Exploitation 39(4), pp. 1306–1323, DOI: 10.1177/0144598721100338.
 
11.
Luong, N.H. 2021. Potential Market and Impact of Clean Hydrogen Development to 2050 in Vietnam. Petrovietnam Journal 12, pp. 40–47, DOI: 10.47800/PVJ.2021.12-04.
 
12.
Luong et al. 2020 – Luong, N.H., Giang, N.T.C. and Thuan, H.M. 2020. Hydrogen production from renewable resources for use in refineries and petrochemical plants in Vietnam. Petrovietnam Journal 11, pp. 37–55, DOI: 10.47800/PVJ.2020.11-04.
 
13.
National Renewable Energy Laboratory 2022. System Advisor Model Software (version 2022.11.21).
 
14.
Opakhai et al. 2024 – Opakhai, S., Kuterbekov, K. and Zhumadilova, Z. 2024. Hydrogen energy in Kazakhstan: prospects for development and potential. Polityka Energetyczna – Energy Policy Journal 27(2), pp. 141–194, DOI: 10.33223/epj/188475.
 
15.
Phan et al. 2023 – Phan, T.P., Nguyen, T.L. and Nguyen, P.K.T. 2023. Evaluation and enhancement of hydrogen production from Vietnamese macroalgae in the single-stage of dark fermentation and microbial electrolysis cell. Biomass and Bioenergy 175, DOI: 10.1016/j.biombioe.2023.106885.
 
16.
Phap et al. 2022 – Phap, V.M., Sang, L.Q., Ninh, N.Q., Binh, D.V., Hung, B.B., Huyen, C.T.T. and Tung, N.T. 2022. Feasibility analysis of hydrogen production potential from rooftop solar power plant for industrial zones in Vietnam. Energy Reports 8, pp. 14089–14101, DOI: 10.1016/j.egyr.2022.10.337.
 
17.
Prime Minister 2023. National electricity development plan for the period 2021–2030 vision to 2050.
 
18.
Prime Minister 2024. Decision 165/QD-TTg approving Vietnam’s hydrogen energy development strategy to 2030, vision to 2050.
 
19.
Rezaei et al. 2018 – Rezaei, M., Salimi, M., Momeni, M. and Mostafaeipour, A. 2018. Investigation of the socio-economic feasibility of installing wind turbines to produce hydrogen: Case study. International Journal of Hydrogen Energy 43(52), pp. 23135–23147, DOI: 10.1016/j.ijhydene.2018.10.184.
 
20.
Rezaei et al. 2019 – Rezaei, M., Mostafaeipour, A., Qolipour, M. and Momeni, M. 2019. Energy supply for water electrolysis systems using wind and solar energy to produce hydrogen: a case study of Iran. Frontiers of Energy 13, pp. 539–550, DOI: 10.1007/s11708-019-0635-x.
 
21.
Sedai et al. 2023 – Sedai, A., Dhakal, R., Gautam, S., Sedhain, B.K., Thapa, B.S., Moussa, H. and Pol, S. 2023. Wind energy as a source of green hydrogen production in the USA. Clean Energy 7(1), pp. 8–22, DOI: 10.1093/ce/zkac075.
 
22.
Sharshir et al. 2024 – Sharshir, S.W., Joseph, A., Elsayad, M.M., Tareemi, A.A., Kandeal, A.W. and Elkadeem, M.R. 2024. A review of recent advances in alkaline electrolyzer for green hydrogen production: Performance improvement and applications. International Journal of Hydrogen Energy 49(C), pp. 458–488, DOI: 10.1016/j.ijhydene.2023.08.107.
 
23.
World Bank (WB) 2001. Wind energy resource atlas of Southeast Asia.
 
24.
Wu et al. 2020 – Wu, X., Li, H., Wang, X. and Zhao, W. 2020. Cooperative Operation for Wind Turbines and Hydrogen Fueling Stations With On-Site Hydrogen Production. IEEE Transactions on Sustainable Energy 11(4), pp. 2775–2789, DOI: 10.1109/TSTE.2020.2975609.
 
25.
Xue et al. 2021 – Xue, Q., Wang, Z. and Zhang, Y. 2021. Environmental Benefit and Investment Value of Hydrogen-Based Wind-Energy Storage System. Frontiers in Energy Research 9, DOI: 10.3389/fenrg.2021.629136.
 
26.
Zheng et al. 2023 – Zheng, Y., You, S., Huang, C. and Jin, X. 2023. Model-based economic analysis of off-grid wind/hydrogen systems. Renewable and Sustainable Energy Reviews 187, DOI: 10.1016/j.rser.2023.113763.
 
eISSN:2720-569X
ISSN:1429-6675
Journals System - logo
Scroll to top