ORIGINAL PAPER
Analysing efficiency and economic aspects in organic Rankine cycle systems
More details
Hide details
1
Department of Energy, Taraz Regional University named after M.Kh. Dulaty, Kazakhstan
2
Department of Automation and Telecommunications, Taraz Regional University named after M.Kh. Dulaty, Kazakhstan
3
Department of Technical Physics, Taraz Regional University named after M.Kh. Dulaty, Kazakhstan
Submission date: 2024-03-08
Final revision date: 2024-04-26
Acceptance date: 2024-05-09
Publication date: 2024-09-24
Corresponding author
Nazym Abdlakhatova
Department of Energy, Taraz Regional University named after M.Kh. Dulaty, Kazakhstan
Polityka Energetyczna – Energy Policy Journal 2024;27(3):87-108
KEYWORDS
TOPICS
ABSTRACT
Research on the technical and economic aspects of organic Rankine cycle (ORC) systems is of great relevance, showing potential for reducing environmental impacts and improving resource efficiency, which becomes critical in the context of the rapid global transformation towards sustainable and energy-efficient solutions. The purpose of this study was to investigate the existing systems in the field of ORC systems, including the technical and economic aspects of their application in small-scale power units. The study employed the statistical method, comparative method, and analysis. The study highlighted the key aspects of the application of ORC technology in small-scale power units. Substantial attention was given to economic analyses to identify factors affecting the competitiveness of technology in the field of small-scale energy projects. An economic study found high unit costs to be the main obstacle to the widespread adoption of the ORC in small-scale energy applications. This study also presented a technical review of the techniques for selecting the expander and working fluid. The analysis of these aspects revealed the main parameters affecting the efficiency and cost of the system. Optimization of the ORC to reduce unit cost was highlighted as a priority area for development, facilitating faster payback and widespread adoption of the technology. The role of the expander in the system and reducing the cost of high-speed power generators were also considered prominent factors for improving economic efficiency. The obtained findings may represent a valuable framework, enabling cost reduction in small-scale ORC systems and promoting the development of clean and economically competitive small-scale energy solutions.
METADATA IN OTHER LANGUAGES:
Polish
Analiza efektywności i aspektów ekonomicznych w organicznych systemach cyklu Rankine’a
dobór płynu roboczego, ekspander, zespoły napędowe, konkurencyjność, koszt jednostkowy
Badania nad technicznymi i ekonomicznymi aspektami organicznych systemów cyklu Rankine’a (ORC) są niezwykle istotne, wykazując potencjał redukcji wpływu na środowisko i poprawy efektywności wykorzystania zasobów, co staje się krytyczne w kontekście szybkiej globalnej transformacji w kierunku zrównoważonych i energooszczędnych rozwiązań. Celem tej analizy było zbadanie istniejących systemów w dziedzinie systemów ORC, w tym technicznych i ekonomicznych aspektów ich zastosowania w małych jednostkach energetycznych. W analizie zastosowano metodę statystyczną, metodę porównawczą i analizę. Badanie podkreśliło kluczowe aspekty zastosowania technologii ORC w małych jednostkach energetycznych. Dużą uwagę poświęcono analizom ekonomicznym w celu zidentyfikowania czynników wpływających na konkurencyjność technologii w dziedzinie małych projektów energetycznych. Badanie ekonomiczne wykazało, że wysokie koszty jednostkowe są główną przeszkodą dla powszechnego przyjęcia ORC w zastosowaniach energetycznych na małą skalę. Przedstawiono również przegląd techniczny technik doboru ekspandera i płynu roboczego. Analiza tych aspektów ujawniła główne parametry wpływające na wydajność i koszt systemu. Optymalizacja ORC w celu obniżenia kosztów jednostkowych została wyróżniona jako priorytetowy obszar rozwoju, ułatwiając szybszy zwrot z inwestycji i powszechne przyjęcie technologii. Rola ekspandera w systemie i obniżenie kosztów szybkich generatorów mocy zostały również uznane za główne czynniki poprawy efektywności ekonomicznej. Uzyskane ustalenia mogą stanowić cenne ramy, umożliwiające obniżenie kosztów w małych systemach ORC i promujące rozwój czystych i ekonomicznie konkurencyjnych rozwiązań energetycznych na małą skalę.
REFERENCES (41)
1.
Abdibattayeva et al. 2020 – Abdibattayeva, M., Bissenov, K., Zhubandykova, Z., Orynbassar, R. and Tastanova, L. 2020. Complex oil-containing waste treatment by applying solar energy. Environmental and Climate Technologies 24(1), pp. 718–739, DOI: 10.2478/rtuect-2020-0045.
2.
Abdibattayeva et al. 2021 – Abdibattayeva, M., Bissenov, K., Askarova, G., Togyzbayeva, N. and Assanova, G. 2021. Transport of heavy oil by applying of solar energy. Environmental and Climate Technologies 25(1), pp. 879–893, DOI: 10.2478/rtuect-2021-0066.
3.
Ali et al. 2021 – Ali, M., Alkaabi, A.K., Alameri, S.A. and Addad, Y. 2021. Overall efficiency analysis of an innovative load-following nuclear power plant-thermal energy storage coupled cycle. International Journal of Exergy 36(1), pp. 98–122, DOI: 10.1504/IJEX.2021.117606.
4.
Ali et al. 2022 – Ali, M., Alkaabi, A.K. and Addad, Y. 2022. Numerical investigation of a vertical triplex-tube latent heat storage/exchanger to achieve flexible operation of nuclear power plants. International Journal of Energy Research 46(3), pp. 2970–2987, DOI: 10.1002/er.7357.
5.
Alshammari et al. 2018 – Alshammari, F., Usman, M. and Pesyridis, A. 2018. Expanders for organic Rankine cycle technology. [In:] Wang, E. ed. Organic Rankine cycle technology for heat recovery. London: IntechOpen, pp. 41–59, DOI: 10.5772/intechopen.78720.
6.
Alshammari et al. 2020 – Alshammari, F., Karvountzis-Kontakiotis, A., Pesyridis, A. and Alatawi, I. 2020. Design and study of back-swept high pressure ratio radial turboexpander in automotive organic Rankine cycles. Applied Thermal Engineering 164, DOI: 10.1016/j.applthermaleng.2019.114549.
7.
Capata, R. and Pantano, F. 2020. Expander design procedures and selection criterion for small rated organic Rankine cycle systems. Energy Science & Engineering 8(10), pp. 3380–3414, DOI: 10.1002/ese3.710.
8.
Cappiello, A. and Tuccillo, R. 2020. Design and CFD analysis of a radial-inflow turbine for small scale ORC applications. E3S Web of Conferences 197, DOI: 10.1051/e3sconf/202019711005.
9.
Carraro et al. 2019 – Carraro, G., Rech, S., Lazzaretto, A., Toniato, G. and Danieli, P. 2019. Dynamic simulation and experiments of a low-cost small ORC unit for market applications. Energy Conversion and Management 197, DOI: 10.1016/j.enconman.2019.111863.
10.
Chatzopoulou et al. 2019 – Chatzopoulou, M.A., Lecompte, S., De Paepe, M. and Markides, C.N. 2019. Off-design optimization of organic Rankine cycle (ORC) engines with different heat exchangers and volumetric expanders in waste heat recovery applications. Applied energy 253, DOI: 10.1016/j.apenergy.2019.113442.
11.
Chowdhury, A.S. and Ehsan, M.M. 2023. A critical overview of working fluids in organic Rankine, supercritical Rankine, and supercritical Brayton cycles under various heat grade sources. International Journal of Thermofluids 20, DOI: 10.1016/j.ijft.2023.100426.
12.
Dymytrov, A.A. 2014. Analysis of shipboard hybrid trigeneration system operating on ejector refrigeration cycle and organic Rankine cycle (Analiz sudovoy gibridnoy trigeneratsionnoy sistemy, rabotayushchey po ezhektornomu kholodil’nomu tsiklu i organicheskomu tsiklu Renkina). Scientific Works of the Odesa National University of Technology 45(3), pp. 215–219 (in Russian).
13.
Fialko et al. 1994 – Fialko, N.M., Prokopov, V.G., Meranova, N.O., Borisov, Y.S., Korzhik, V.N. and Sherenkovskaya, G.P. 1994. Temperature conditions of particle-substrate systems in a gas-thermal deposition process. Fizika i Khimiya Obrabotki Materialov (2), pp. 59–67.
14.
Francesconi et al. 2022 – Francesconi, M., Briola, S. and Antonelli, M. 2022. A review on two-phase volumetric expanders and their applications. Applied Sciences 12(20), DOI: 10.3390/app122010328.
15.
Gielen et al. 2019 – Gielen, D., Boshell, F., Saygin, D., Bazilian, M.D., Wagner, N. and Gorini, R. 2019. The role of renewable energy in the global energy transformation. Energy Strategy Reviews 24, pp. 38–50, DOI: 10.1016/j.esr.2019.01.006.
16.
Herath et al. 2020 – Herath, H.M.D.P., Wijewardane, M.A., Ranasinghe, R.A.C.P. and Jayasekera, J.G.A.S. 2020. Working fluid selection of organic Rankine cycles. Energy Reports 6(Suppl. 9), pp. 680–686, DOI: 10.1016/j.egyr.2020.11.150.
17.
Hu et al. 2022 – Hu, B., Guo, J., Yang, Y. and Shao, Y. 2022. Selection of working fluid for organic Rankine cycle used in low temperature geothermal power plant. Energy Reports 8(Suppl. 3), pp. 179–186, DOI: 10.1016/j.egyr.2022.01.102.
18.
Imamov et al. 2019 – Imamov, E.Z., Muminov, R.A., Jalalov, T.A. and Karimov, Kh.N. 2019. Optimization of the properties of silicon solar cell. [In:] Kozhamzharova, D.P. ed. Proceedings of International Scientific-Practical Conference “Auezov Readings – 17: New Impulses of Science and Spirituality in the World Space”. Shymkent: Mukhtar Auezov South Kazakhstan University 3, pp. 162–164.
19.
Iodice et al. 2020 – Iodice, P., Langella, G. and Amoresano, A. 2020. Energy performance and numerical optimization of a screw expander-based solar thermal electricity system in a wide range of fluctuating operating conditions. International Journal of Energy Research 44(3), pp. 1858–1874, DOI: 10.1002/er.5037.
20.
Kozhageldi et al. 2022 – Kozhageldi, B.Zh., Tulenbayev, Zh.S., Orynbayev, S., Kuttybaev, G., Abdlakhatova, N. and Minazhova, S. 2022. Development of integrated solutions for the decentralisation of electricity supply to power-hungry regions. The Electricity Journal 35(4), DOI: 10.1016/j.tej.2022.107108.
21.
Kyshakevych et al. 2023 – Kyshakevych, B., Maksyshko, N., Voronchak, I. and Nastoshyn, S. 2023. Ecological and economic determinants of energy efficiency in European countries. Scientific Horizons 26(8), pp. 140–155, DOI: 10.48077/scihor8.2023.140.
22.
Lin et al. 2019 – Lin, C.H., Hsu, P.P., He, Y.L., Shuai, Y., Hung, T.C., Feng, Y.Q. and Chang, Y.H. 2019. Investigations on experimental performance and system behavior of 10 kW organic Rankine cycle using scroll-type expander for low-grade heat source. Energy 177, pp. 94–105, DOI: 10.1016/j.energy.2019.04.015.
23.
Mikhailova et al. 2024 – Mikhailova, L., Dubik, V., Dumanskyi, O. and Kozak, O. 2024. Possibilities of landfills and solid waste sites for energy production in Ukraine. Machinery & Energetics 15(1), pp. 86–94, DOI: 10.31548/machinery/1.2024.86.
24.
Orynbayev et al. 2023 – Orynbayev, S., Tokmoldayev, A., Abdlakhatova, N., Zhanpeisova, A. and Tumanov, I. 2023. Improving power plant technology to increase energy efficiency of autonomous consumers using geothermal sources. Energy Harvesting and Systems 11(1), DOI: 10.1515/ehs-2023-0082.
25.
Özcan, Z. and Ekici, Ö. 2021. A novel working fluid selection and waste heat recovery by an exergoeconomic approach for a geothermally sourced ORC system. Geothermics 95, DOI: 10.1016/j.geothermics.2021.102151.
26.
Pantaleo et al. 2019 – Pantaleo, A.M., Simpson, M., Rotolo, G., Distaso, E., Oyewunmi, O.A., Sapin, P., De Palma, P. and Markides, C.N. 2019. Thermoeconomic optimization of small-scale organic Rankine cycle systems based on screw vs. piston expander maps in waste heat recovery applications. Energy Conversion and Management 200, DOI: 10.1016/j.enconman.2019.112053.
27.
Park et al. 2019 – Park, H.S., Heo, H.J., Choi, B.S., Kim, K.C. and Kim, J.M. 2019. Speed control for turbine-generator of ORC power generation system and experimental implementation. Energies 12(2), 200, DOI: 10.3390/en12020200.
28.
Prokopov et al. 1993 – Prokopov, V.G., Fialko, N.M., Sherenkovskaya, G.P., Yurchuk, V.L., Borisov, Yu.S., Murashov, A.P. and Korzhik, V.N. 1993. Effect of coating porosity on the process of heat transfer with gas-thermal deposition. Powder Metallurgy and Metal Ceramics 32(2), pp. 118–121.
29.
Razmjoo et al. 2021 – Razmjoo, A., Kaigutha, L.G., Rad, M.A.V., Marzband, M., Davarpanah, A. and Denai, M. 2021. A technical analysis investigating energy sustainability utilizing reliable renewable energy sources to reduce CO2 emissions in a high potential area. Renewable Energy 164, pp. 46–57, DOI: 10.1016/j.renene.2020.09.042.
30.
Sanaye, S. and Ghaffari, A. 2023. Transient modeling and thermal analysis of an innovative dual-loop Rankine – Organic Rankine heat recovery system integrated with a gas engine. Journal of Thermal Analysis and Calorimetry 148, pp. 10951–10971, DOI: 10.1007/s10973-023-12435-3.
31.
Sugirov et al. 2023 – Sugirov, D.U., Nigmetov, M.Zh., Zhailkhan, N.A. and Erzanov, K.Sh. 2023. Mathematical modeling of the intensification of convective heat transfer in a bundle of smooth pipes (Matematicheskoye modelirovaniye intensifikatsii konvektivnogo teploobmena v puchke gladkikh trub). Bulletin of Almaty University of Power Engineering and Telecommunications 60(1), pp. 44–55, DOI: 10.51775/2790-0886_2023_60_1_44 (in Russian).
32.
Thurairaja et al. 2019 – Thurairaja, K., Wijewardane, A., Jayasekara, S. and Ranasinghe, C. 2019. Working fluid selection and performance evaluation of ORC. Energy Procedia 156, pp. 244–248, DOI: 10.1016/j.egypro.2018.11.136.
33.
Tokmurzin et al. 2018 – Tokmurzin, D., Otarov, R., Aiymbetov, B., Bulatov, I. and Smith, R. 2018. Case study of power generation and CO2 emissions reduction potential from introduction of organic Rankine cycle on Atyrau oil refinery plant vacuum distillation unit. Materials Today: Proceedings 5(11), pp. 22859–22870, DOI: 10.1016/j.matpr.2018.07.100.
34.
Tyutebaeva G.M. and Baybekova V.O. 2015. Realization of technological processes at TPP (Realizatsiya tekhnologicheskikh protsessov na TES). Almaty: Almaty University of Power Engineering and Telecommunications, 81 pp. (in Russian).
35.
Wei et al. 2020 – Wei, J., Hua, Q., Wang, J., Jiang, Z., Wang, J. and Yuan, L. 2020. Overview of the development and application of the twin screw expander. Energies 13(24), DOI: 10.3390/en13246586.
36.
Wu et al. 2019 – Wu, Y., Guo, Z., Lei, B., Shen, L. and Zhi, R. 2019. Internal volume ratio optimization and performance analysis for single-screw expander in small-scale middle temperature ORC system. Energy 186, DOI: 10.1016/j.energy.2019.07.129.
37.
Xu et al. 2020 – Xu, B., Rathod, D., Yebi, A. and Filipi, Z. 2020. A comparative analysis of real-time power optimization for organic Rankine cycle waste heat recovery systems. Applied Thermal Engineering 164, DOI: 10.1016/j.applthermaleng.2019.114442.
38.
Yakymenko et al. 2022 – Yakymenko, I., Lysenko, V. and Witaszek, K. 2022. Methodology of development of intellectual energy efficient system of control of temperature-humidity regime in industrial heat. Machinery & Energetics 13(1), pp. 18–25, DOI: 10.31548/machenergy.13(1).2022.18-25.
39.
Zhang et al. 2019 – Zhang, X., Zhang, C., He, M. and Wang, J. 2019. Selection and evaluation of dry and isentropic organic working fluids used in organic Rankine cycle based on the turning point on their saturated vapor curves. Journal of Thermal Science 28, pp. 643–658, DOI: 10.1007/s11630-019-1149-x.
40.
Zholamanova et al. 2023 – Zholamanova, M., Nurmukhametov, N., Tolmachev, M., Sarsen, K. and Amerkhanova, A. 2023. Comparative analysis of strategies for innovative development of the fuel and energy complex: the experience of the EU Countries. International Journal of Energy Economics and Policy 13(1), pp. 128–134, DOI: 10.32479/ijeep.13628.
41.
Zhumadilova et al. 2023 – Zhumadilova, A., Zhigitova, S. and Turalina, M. 2023. The impact of greenhouse gases on climate change. Scientific Horizons 26(6), pp. 97–109, DOI: 10.48077/scihor6.2023.97.